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Abstract. The outer-product reduction coefficients (ORC) of the graded state permutation 
group, which differ from the ORC of the ordinary permutation group only in signs, have 
been identified with the Clebsch-Gordan coefficients (CGC) for the special Gel’fand basis 
of the graded unitary group SU(m/n). The CGC for a general Gel’fand basis of S U ( m / n )  
can be easily obtained from those for the special one. Tables of the S U ( m / n )  CGC are 
presented which are valid for arbitrary m and n. 

1. Introduction 

The graded unitary group SU( m / n )  has recently become a topic of interest in physics 
in the context of supersymmetries relating particles with different statistics (Ne’eman 
1979, Dondi and Jarvis 1979,1981, Iachello 1980). The first evidence for the existence 
of the supersymmetry in nature has been reported in the field of nuclear physics 
(Iachello 1980, Balantekin et a1 1981). Many properties of nuclei in the Os-Pt region, 
including excitation energies, electromagnetic transition rates and transfer reaction 
intensities, can be described fairly well (within about 30%) by a U(6/4) supersymmetry. 

The Casimir operators, representations, and branching rules of the graded unitary 
group have been studied extensively (Jarvis and Green 1979, Dondi and Jarvis 1981, 
Balantekin and Bars 1981, Balantekin 1982, Han et a1 1981, Sun and Han 1981, 
Chen et a1 1983b). More recent progress on the Clebsch-Gordan coefficients (CGC) 

and isoscalar factors (ISF) or the coefficients of fractional parentage (CFP) of the graded 
unitary group have been sketched previously in Chen et a1 (1983a), followed by 
detailed expositions on several separate subjects, such as the formulae for the Gel’fand 
matrix elements of the generators E:- ,  of U(m/n)  (Chen and Chen 1983), the 
identification of the U(mp + nq/mq + n p )  3 U(m/n)  X U( p / q )  CFP with U( mn)  2 

U( m )  X U(n)  CFP as well as with the permutation group S (  f )  2 S (  f J  x S (  fi) ISF, and 
the identification of the U ( m + p / n + q )  3 U ( m / n ) x U ( p / q )  CFP with the U ( m + n )  3 

U( m )  X U( n )  CFP as well as with the permutation group outer-product ISF for S (  f )  2 

S(fi) X S(f2), along with the tabulation of the one-body CFP for the aforementioned 
group chains (Chen et a1 1983c, d). What the present paper is concerned with is the 
construction of the CGC for the Gel’fand basis of SU(m/n) .  

As we know, several methods are available for calculating the CGC of SU(n) in 
the Gel’fand basis. They mainly fall into the following two categories. One is the 
unitary group approach (for SU(3): de Swart 1963, McNamee and Chilton 1964, 
Bickerstaff et a1 1982, Sun 1980; for SU(4): Haacke et a1 1976; for SU(n): Baird 
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and Biedenharn 1963), and the other is the permutation group approach based on the 
duality between the unitary group and the permutation group (Chen et a1 1978a). A 
distinguishing feature of the latter approach lies in the fact that it is rank independent. 
Another advantage is that it turns out to be the most direct way for extending the 
calculation of the CGC of the ordinary unitary group to that of the graded unitary group. 

The kernel of the permutation group approach to the SU( n )  CGC is the identification 
of the quasi-standard basis of the permutation group with the Gel’fand basis of the 
unitary group (Chen et a1 1977) and the introduction of a versatile coefficient, the 
so-called outer-product reduction coefficient ( ORC) of the permutation group (Chen 
et a1 1978a). It was shown that the ORC is the coupling coefficient for the U (  m + n )  1 
U ( m )  X U ( n )  irreducible basis (IRB) (Chen et a1 1978b, 1983c), and the CGC for the 
special Gel’fand basis of SU(n).  Furthermore, from it we can obtain the CFP for 
U ( m  + n )  3 U (  m )  X U (  n )  and U (  m / n )  2 U (  m )  X U (  n )  etc (Chen et a1 1983c), as well 
as the CGC for a general Gel’fand basis of SU(n)  (Chen et a1 1978a). The present 
work will demonstrate that the ORC for the graded state permutation group, which 
are the same as the ordinary ORC up to sign factors, are the CGC for the special Gel’fand 
basis of S U ( m / n ) ,  and that the CGC for a general Gel’fand basis of S U ( m / n )  can be 
obtained from those for the special Gel’fand basis. Tables of the SU( m / n )  CGC, valid 
for arbitrary m and n, and containing the SU( n )  CGC as its special case, are presented. 

2. The ORC for the graded state permutation group 

We shall follow the notation of Chen et al ( 1 9 8 3 ~ )  as closely as possible. The readers 
are referred to this reference for any unexplained notation in this paper. 

The ORC are the coefficients of a unitary matrix which reduces the outer-product 
of the irreps [aI] and [a2] of the permutation groups S(f l )  and S(f2), respectively, 
into the direct sum of the irreps [a] of S( f )  with f = f l  +f2 ,  

where the integers {ala,a} are decided by the Littlewood rule. In other words, the 
ORC are the expansion coefficients for expanding the Yamanouchi basis (YB) I Y ,“ ( U ) )  

of S ( f )  in terms of the YB IYE1(wl) )  and I Y z ( w 2 ) )  of S( f l )  and S(f2) acting on the 
coordinate indices represented by the normal order sequences ( w l )  and (w2) ,  respec- 
tively 

m = rw, m, = r,w,. 

Now let us carry over the discussion of the ORC of the ordinary permutation group 
S(f) into that of the graded state permutation group 9( f ) .  
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Suppose there are f = m + n single particle (SP) states 

i = 1 , 2 ,  . . . m, A, = {'" 
a,_,, i = m + l , . .  . m + n ,  (2.4) 

with a, and a, representing the bosonic (commuting) and fermionic (anticommuting) 
SP states respectively. The ordering of. the SP states is specified as A I  < Az < . . . < A, 
A graded state permutation (AIAI)" E Y (  f )  is defined by its action on f-particle product 
states (Chen et a1 1983b): 

( AIAI) " I A, . . . A,A, . . . AkAl . . . A4) 

( 2 . 5 )  - - [A, A ]  [AI A ]  IA,. . . AIA,. . . &A, . . . Aq), 

A/ Ak 

where the first and second factors are the sign factors (Jarvis and Green 1979), 

-1 
+ 1 otherwise. 

for A, and A, being both fermionic 
(2.7) 

The sign factor of (2.6) comes from the fact that for the SP state A, in (2.5) to reach 
to its final position it has to cross over the SP states A,, . . . Ak. 

Instead of grouping the f ordinals into two noraal order sequences ( U , )  and ( w 2 ) ,  
we now group the f SP states 

( 4 )  = ( A L A 2 . .  . A,)  (2.8) 
into the two normal order states 

The Y B  of $(f,) acting on the SP states ( 4 , )  can be designated by 

1~,mJ0 = I y: (4)L (2.10) 

where Y: (e , )  are the graded Weyl tableaux resulted from filling the Young diagram 
Y' with the SP states (e l )  according to the ordering specified by the Yamanouchi 
symbol r,. 

We now claim that the counterpart of (2.3) for the graded state permutation group 
1s 

/[m]em)" = [ U , ,  w 2 i ( [ d o m l ~ ,  m l ~ ~ m ~ ) I ~ L m l ) o / ( + ~ m z ) o ,  (2.11) 
m l m Z  

where [ w l ,  4 are sign factors 

(2.12) 
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Otherwise stated, the ORC for the graded state permutation group and the ordinary 
permutation group are the same except for the difference in signs. To show this, we 
only need to demonstrate that !he basis vector [ U , ,  w 2 ] \ u 1  m1)0/c72m2)0 transforms under 
the graded state permutation 9 in exactly the same way as the basis vector (ulm1)1u2m2) 
under the ordinary permutation p.  

The action of a permutation p on a normal order sequence ( w I 2 )  = (wl, w 2 )  can be 
written as 

P ( W l 2 )  = (i), ( 2 . 1 3 ~ )  

where (G) is usually not a normal order sequence, but can be brought to a normal 
order sequence (ai2) = ( w i ,  m i )  through the permutation 

= ( p ,  E S ( ~ J  acting on ( U : ) ,  (2.13 b )  

i.e. 

P ( W l 2 )  = P 1 P 2 ( w i z ) .  

Let us introduce the order-preserving permutation 

( 2 . 1 3 ~ )  

(2.14) 

which brings the natural sequence ( w )  = (12.  . . f )  into the normal order sequence 
(w12)  = ( U , ,  w z ) .  Using the order-preserving permutation (2.14), from ( 2 . 1 3 ~ )  we have 

PQ,,, = P I P ~ Q ~ ~ ~ .  (2.15) 

Therefore the basis vectors lul ml)lu2m2) transform as 

p[(y;l(wl))(  Y:$(o~))I = C DP;~r, (p~)~>rz(p2) jY~~(w;)) I  Y > ( w i ) ) ,  

where Dmi are the Young-Yamanouchi matrices. 

(2.16) 
r i  r i  

Now turn to the graded state permutation group. Let us call 

IF )=  l A , A 2 . .  . Af), IFn) = IF,, & 2 ) ,  (2.17) 

the natural and normal order state respectively. In parallel to (2.14), the following 
operator 

6% = ( : ) 
w12 

(2.18) 

is called the order-preserving graded state permutation. It is easily seen that 

d,,zla = [ U l ,  w211&2). (2.19) 
Due to the isomorphism between S(f) and P( , f ) ,  in analogy with (2.15) we have 

Sd,,, = @l@2dwiz, 9, E S(fi) acting on (6;). (2.20) 

Multiplying (2.20) from the right by I&), 
@&,, IS) = 4, @,6,;, 16). ( 2 . 2 1 ~ )  

Then using (2.19), one has 

@[Wl ,  w2IlF12) = @ , @ 2 [ w ; ,  4 1 1 4 d .  (2.21 b )  
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Hence the transformation law for the basis vectors [ U ] ,  w z ] / a I  m1)'1a2m2)' is 

@ ( [ U , ,  4 Yy,l (&)) I  y 2  ( 9 2 ) ) )  

= x qr, ( P , ) q r z ( P 2 ) ( [ 4 ,  4 1 1  y;1(4; ) ) I  y y & ; ) ) ) .  (2.22) 
r i  r i  

Comparing (2.22) with (2.16) shows that (2.11) is correct. 
An example of ( 2 . 1 3 ~ )  and (2.21b) is 

p36(134,256)=(&)=(164,253)=p46p3,(146,235). 

(2.23) 

It should be noted that although both the graded coordinate permutation group 
s ( f )  and the graded state permutation group @ ( f )  ar? isomorphic to the ordinary 
Permutation group S ( f ) ,  a dissimilarity exists between S ( f )  and Y ( f ) ,  i.e. the ORC of 
S ( f )  is identical with that of S ( f )  (Chen et a1 1983c) but not with that of & f )  on 
account of the extra sign factor [ U , ,  w2]. In order to fully understand thisodissimilarity, 
it is instructive to supplement the proof on the equality of the ORC of S ( f )  and that 
of S ( f ) ,  which is omitted in the paper of Chen et a1 (1983). 

We must point out that an isolated Y B  of s ( f )  is meaningless, in contrast to the 
Y B  of @ ( f ) ,  which unambiguously represents a special Gel'fand basis of SU(m/n) .  
The YB of s ( f )  has a definite peaning only when it is used in conjunction with an IRB 
of SU( m/ n). Let the IRB of S( fi) and SU( m / n )  be denoted by 

(2.24) 

where eqvation (30) in Chen er a1 (1983b) has been used, W? denotes the Weyl 
tableau, p[,:lsc ( U , )  is the projection operato! of s( f , )  acting on the coordinate indices 
(q). Whether I Y:  (U,)) '  represents a YB of S ( f )  or S ( f )  is entirely decided by whether 
W 2  is a graded or ordinary Weyl tableau. The imparity of s( f )  and @( f )  is in fact 
a reflection of the difference between the coordinate indices and the state indices, the 
former being ungraded, while the latter are graded according to their being bosonic 
or fermionic. Therefore, in essence we only have one graded permutation group, i.e. 
the graded state permutation group, while the so-called graded coordinate permutation 
group s( f )  is nothing other than the representation of the ordinary permutati9n group 
S ( f )  in a graded space. This point is quite clear from the definition of S ( f )  (see 
equation (10) in Chen et a1 (1983b)). 

Now let us study the action of the permutation 6 E $ ( f )  on the product of the basis 
vectors of (2.24). In view of the isomorphism between i ( f )  and S ( f ) ,  ( 2 . 1 3 ~ )  remains 
true for s ( f ) .  It thus follows that 

(2.25) 

1 Y :  = I Y:  ( U 8 ) ,  w: y = $:Isl ( U , ) l ~ i i ) ~ t )  . . . A$;)) 

h F y S 1  ( U l ) * 1 y U 2 )  = fi,h2Prysl ( U ;  ) P p ( U ; ) .  

Using (2.24) and (2.25), we immediately obtain 

hi Yy,I (UI))'l y 2  (w2))' =91h21 YE1 ( U ;  )>"I Y 2  (4))' 
= c ~ : / r ~  ( p ~ ) ~ ~ ~ r 2 ( ' P 2 ) ~ y ~ ( ~ ~ ) ) ~ ~ y ~ ~ ( ~ ; ) ) ~ .  (2.26) 

Comparing (2.26) with (2.16) we see that the ORC of i( f) and S( f )  are indeed the same. 
r i  r2 
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3. The CGC of SU(m/n) 

According to Chen et a1 (1983b), when there are repeated SP states in (&), the basis 
vector I[a]m)' = I YP ( 2 ) )  becomes the un-normalised quasi-standard basis of the 
graded state permutation group, and the latter has been identified with the Gel'fand 
basis I [ u ] ~ ) ~  of S U ( m / n ) ,  

where I [ u ]  w)O and /[a,] w,)' are normalised Gel'fand bases of SU( m / n ) ,  and 

(a, (3.2) i [ u , l m ,  E z[~,b, (41, i [ r l m  g [ n j r  

are the normalisation constants depending on a, r, w and U,, r,, w,  respectively. The 
indices w and w, label the graded Weyl tableaux. Notice that the correspondence 
between m and w, or m, and w, is not one-to-one, instead there may be several m( m,) 
corresponding to the same w ( w,). 

Equation (2.11) remains valid when some of the SP states in ( 4 )  and (C,)  are 
identical. Inserting (3.1) into (2.11), we have 

I [ a ] e ~ ) ~  = ) - I  

x c ( C' [U,, w z l ( [ ( + ~ e m l ~ l m 1 ( + 2 ~ 2 ) i ~ ~ i ~ m l ~ [ ~ 2 ~ m 2  ~ ~ ~ w ~ ) o ~ ~ ~ w ~ ) o  

(3.3) 
w w 2  m 1 m 2  1 

where the prime in the second summation symbol means that the summation is restricted 
to those m, which correspond to the same graded Weyl tableau w,. 

From (3.3) we obtain a relation between the CGC of SU(m/n)  and the ORC of S(f): 

o([a~ewlal  1 2 2  (+ ) o =  ( i [ u I m ) - 1  C' i [ ~ ~ I m l ~ [ u J m  2 Iw1, w2I([aI om I a1 m, 02m2), 

where o ( [ a ] ~ w ~ a l w , a z w 2 ) o  denotes the CGC of SU(m/n) .  

mlmz 

(3.4) 

3.1. Special cases 

3.1.1. The special Gel'fand basis. When all the SP states in (&) are different, I[a]m)' 
and i[y,]m,)o become the special Gel'fand basis of S U ( m / n ) ,  and all the norms R["" 
and R['~'m~ are equal to one (Chen et a1 1983b). Now the correspondence between 
m and w, or m, and w, is one-to-one, and (3.1) and (3.4) reduce to 

l [ a lm)o  = I[aIw)', I[c+llm,)o = I [ ~ l l w l ) o ~  (3.5) 

o ( [ c + ~ e w l a l  w ~ ( + ~  w 2 ) ~  = [ w l  w2i([c+iemla1 ~ ~ 1 7 1 ~ ) .  (3.6) 

In other words, the CGC for the special Gel'fand basis of S U ( m / n )  is equal to the 
ORC of the graded state permutation group S(m + n). 

3.1.2. Totally bosonic case. If all the SP states are bosonic, i.e. n = 0, then [ U ] ,  w2] = 1;  
the Gel'fand bases 1[(+]w)O and I[o;]w,)" of SU(mJ0) are the Gel'fand bases of the 
ordinary unitary group SU(m) ,  and the norms R["]" and d r u ~ l m ~  for s(f) become 
the norms R[""" and R["~]"~ for Stf) ,  respectively (Chen et a1 1978a). In this case, 
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(3.4) reduces to the expression of the S U ( m )  CGC in terms of the ORC of S( f ) ,  first 
derived by Chen et a1 (1978a). 

3.1.3. Totally fermionic case. ( a )  Without repeated SP states. 
In this case, from (2.19) we know that the sign factor 

[U,, 4 = ~,,,, (3.7) 

where S , , ,  is the parity associated with the normal order sequence (wI2)  and S, , ,  = *l 
as the number of transpositions required to change the natural sequence (12 .  . . f )  
into the normal order sequence ( w I 2 )  is even or odd. 

Attach the quantum numbers for the graded coordinate permutation group g (  f )  
to the bases in (2.11) and using (3.7), we have 

(3.8) 

Recall that m, = r,w,, and r, and s, are the Yamanouchi numbers. The left-hand side 
of (3 .8)  is now the S ( f ) 3 $ ( f l ) X S ( f 2 )  IRB and the S U ( m / n )  Gel'fand basis (Chen 
et a1 1983~) .  

According to (31b) in Chen etal (1983b) and (6.5) in Chen etal (1983c), the IRB 
of SU(O/n)  and SU(n)  are related as 

(3.9b) 

where k I = j l w l  and f i = F w ,  and E ( u , u ~ u ~ )  is a phase factor. On the other hand, 
according to (Chen et a1 1978a, Chen and Gao 1981), the ORC has the property that 

(3.9c) ([u]Om lul m1u2m2)SWl2 = E ( u1 a , u e ) A ~ l A ~ A p ( [  G] O f i  lGl k ,  G2r&). 

Combining (3.8) with (3.9) we get 

Suppressing the quantum numbers for the coordinate permutation group and replacing 
the summation indices m, and m2 with f i ,  and I j t2 ,  it becomes 

I[ G] erit) = C ([ G] erit, 1 6, ritl ~ ~ 1 j 1 ~ ) 1  gI kl)1 c2 rit2). 
m ,  f i ,  

(3.10 b )  

Hence we see that this case reduces to the totally bosonic case. 
( b )  With repeated SP states. 
From (44a) in Chen et a1 (1983b), as well as (3.7), ( 3 . 9 ~ )  and (3.4), we can show 

o ( [ ~ ] e ~ l ~ l  W , U ~ W ~ ) ~  = E ( [ ~ ] ~ G ~ G . , G ~ G . , G ~ )  (3.11) 

where E is a sign factor depending on ul, u2 and U as well as on the component indices 
w l ,  w2 and w. Equation (3.11) shows that the totally fermionic case with repeated SP 
states again corresponds to the totally bosonic case. For instance, tables 3.3(a), ( b ) ,  ( c )  
correspond to tables 2.5(a),  ( b ) ,  ( c ) ,  respectively. 

that 
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3.2. Phase convention 

We use the Baird-Biedenharn (1965) phase convention, i.e. demanding that the CGC 

of the highest weight (HW) state be real positive, 

( [u]~Hw~u,Hw,,  a 2 w 2 ) >  0. (3.12) 

This in turn fixes the overall phase of the ORC (Chen and Gao 1981). The Baird- 
Biedenharn phase convention is a generalisation of the Condon-Shortley phase conven- 
tion for the SU(2) CGC. For example, tables 2.1, 2.2(a), ( b ) ,  2.3(a),  ( b ) ,  ( c )  are 
precisely the usual SU(2)  CGC. 

4. Tables of the SU(m/n) CGC 

In this section we present some tables for the SU( m/  n )  CGC. The tables are classified 
into three types. All the table headings refer to the graded Weyl tableaux, but for 
simplicity, we have deleted all the small circles '.'-the tags for the IRB of the graded 
unitary group SU( m/ n ) .  

4.1. Special Gel'fand basis 

From (3.6) and the ORC in Chen and Gao (1981), we immediately obtain the CGC for 
the S U ( m / n )  special Gel'fand basis, listed in tables 1.1-1.12 for systems with up to 
five particles. The table headings have the following meaning 

Tables 1.1-1.6 Tables 1.7-1.12 

where 

(u1w17)= (UIWI, U2W2)'[W1, ~211~1WI)l~2W2). (4.1) 

In tables 1.7-1.12, the special Gel'fand basis of S U ( m / n ) ,  or the Y B  of @ ( m + n ) ,  is 
labelled, for convenience, by the partition and an ordinal numbering the Y B  vector in 
the decreasing page order of the Yamanouchi numbers (Hamermesh 1962). The 
second column is the normalisation constant. The value listed is the square of the 
CGC. An asterisk denotes a negative CGC value. 

By identifying (123 . . .) with a specific normal order state (d) ,  we obtain a SU( m / n )  
table for a specific case. For instance, by letting 1234 = abcd, abccu, abap, acupy and 
aPy8 we can obtain the S U ( m / n )  CGC for the cases of 4 bosons, 3 bosons and 1 
fermion,. . . down to 4 fermions. 

The S U ( m / n )  CGC for a six-particle system can be found from the ORC of S(6) 
(Chen and Gao 1981), which, however, are relatively inaccessible. Fortunately, with 
the S ( 5 )  ORC listed in tables 1.7-1.12 and the S(6) 2 S ( 5 )  outer-product ISF (i.e. the 
U (  m + n )  3 U (  m )  x U (  n )  one-body CFP) 

(4.2) 

listed in Chen et a1 (1983~1,  we can easily reconstruct the S(6) ORC by using the 
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inverse of equation ( 2 . 1 3 ~ )  in Chen et a1 (1983c), 

For example 

(4.4) 

The above example is just the reverse of the example (2.14) in Chen et a1 ( 1 9 8 3 ~ ) .  

4.2. Non-special Gel’fand basis for pure bosons or boson-fermion mixture 

From the special CGC listed in table 1 and the norm listed in table 2 in Chen et 
a1 (1983b), or the analytic expression (5.15) in Chen and Chen (1983), we can easily 
calculate the SU( m/ n)  CGC for non-special Gel’fand bases. As examples, the non- 
special SU(m/n)  CGC for systems with up to four particles are given in table 2. At 
the bottom of each table, a prescription is given for identifying the ordinals with the 
SP states. The first line of each table gives 

(UlW1, U 2 W 2 )  = [ U 1 7  ~ 2 1 I ~ 1 W 1 ) I ~ 2 W 2 ) .  

For instance, by writing out explicitly, the first line in table 2.2(c) has the following 
multiple meanings: 

4.3. Non-special Gel’fand bases for pure fermions 

The SU(O/n) CGC can similarly be calculated from (3.4), and are listed in table 3. It 
is seen that iables 3.1, 3.2 and 3.3 correspond to tables 2.6, 2.4 and 2.5, respectively, 
in conformity with equation (3.11). 

5. Summary and discussion 

The CGC for the SU(m/n)  Gel’fand basis are simply related to the ORC of the 
permutation group through equation (3.4). The SU(m/n)  CGC for systems with up 
to six particles can be either found directly from the tables presented in this paper, 
or calculated from the ORC tables (Chen and Gao 1981) or the outer-product ISF 

(Chen et a1 1983~) .  With the program for the ORC (Chen and Gao 1981) and the 
analytic expression for the norm R[“]“ (Chen and Chen 1983), the SU(m/n)  CGC 
for more complicated cases can be calculated. 
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Table 1. The S U ( m / n )  CGC for the special Gel’fand basis. 

12 2 1 1 123 3 1 1 1 
1 2 1  *I  12 6 4  *1 *1 
2 3 

13 2 1 *1 
2 

1.3. [3]0[11=[4]0[31] 

1234 4 1 1 1 1 
123 12 9 *1 *1 *1 
4 

124 6 
3 

134 2 
2 

4 * 1  *1 

1.4. [2]0[2]=[4]0[31]0[22] 

(12,34) (13,241 (14,23) (23, 14) (24, 13) (34,12) 

1234 6 1 1 1 1 1 1 

123 6 1  1 *1 1 *1 *1 
4 
124 12 4 *1 1 * I  1 *4 
3 
134 4 1 1 *1 *1 
2 

12 12 4 *1 *1 *1 *1 4 
34 

13 4 1 *1 *1 1 
24 
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1.5. [2 ]0 [11]=[31]0[211]  

123 3 1  1 1 
4 

124 24 *I 1 9 1 9 
3 

134 8 *1 *1 1 1 4 
2 

12 8 4  *1 1 *1 1 
3 
4 

13 24 9 * 1  * 9  1 4 
L 
4 

14 3 
2 
3 

1 *1 1 

~ ~ ~~~ 

1.6. [21]0[1]=[31]0[22]0[211] 

491 

123 3 
4 

124 96 
3 

134 32 
2 

12 16 
34 

13 16 
24 

12 32 
3 
4 

13 96 
2 
4 

14 3 
2 
3 

1 1 1 

36 4 *1 * I  

1 *1 

4 4 * 1  *1 

3 *3 

12 *12 3 3 

*27 27 

12 

4 

36 

27 

12 3 

*3 

*4 * I  

2 1  

*3 

*3 

1 

*1 

*4 *1 1 

1 * I  1 
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t - m m -  
N *  * 

t - m - - -  
N *  * 

r - m m -  
N *  * * * 

r - m - - -  
N *  * * * * 

d N N d  - *  * 
N e -  - *  * 

N d  
i * 

m a  - CPI * 

3 X 
d 

N 

2 

P 4 - e - m  * * *  - - - m t -  * N 
X N N  
N *  * 

X N N  
N *  - C 4 - c - r .  * * *  - - - m r -  

* * N  * 

0 c X  
N - N d  d * *  

N 
r' 

N r- d 
2 

a 
r- IC, 

* * *  
- N N  * F, m * *  

- N N  * c, m * 

- 0 c  
* N  - 
5 

N X X  

2 2  

N X X  
N N  - -  * - - e  * *  

- - d  N N  

m * 
c 

- 5  * 
- 5  X 

* - 
d d - 5 

I C s  o = N 5: m 
d d X m 5  

d b  = N a N  
N -  e 

c - 
d 
i 

c - 
d 
Y 

c 
N r? 
Y 
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1.9. [2210[1]=[32]0[221] 

[32] 1 3 1 1 1  
2 96 36 4 *1 *1 
3 32 1 *1 
4 32 16 4 4 *1 *1 
5 32 3 *3 

[221] 1 32 16 *4 *4 1 1  
2 32 *3 3 
3 32 12 *12 3 3  
4 96 *27 21  
5 3  

27 27 
12 12 3 *3 

*3 *3 
16 4 *4 *1 1 

3 3 
16 *4 4 1 *I  

*I  *1 
36 *4 *1 1 

1 *I 1 

1.10. [310[21=[510[4110[321 

(123,) (124,) (134,) (234,) (125,) (135,) (235,) (145.) (245,) (345,) 

~ 5 1  10 1 1 1 1 1 1 1 1 1 1 

[41] 1 60 9 9 9 9 *4 *4 *4 *4 *4 *4 
2 36 9 *1 *1 *1 4 4 4 *4 *4 *4 
3 18 4 *1 *1 4 *1 *1 1 1 *4 
4 6  1 *1 1 *1 1 *I  

[32] 1 18 9 *1 *1 *1 *1 *1 *1 1 1 1 
2 36 16 *4 *4 *4 1 1 *1 *1 4 
3 12 4 *4 *1 1 *1 1 
4 12 4 *I *I  *1 *I  4 
5 4  1 *1 *1 1 

( 1 2 3 . ) ~  1123)!45), (124,)=[3,4]1124)l35),. . . 

1.11. [310[111=[4110[311] 

(123,) (124,) (134,) (234,) (125,) (135,) (235,) (145,) (245,) (345,) 

[411 1 4 1 1 1 1 
2 60 *9 1 1 1 16 16 16 
3 30 "4 1 1 *4 1 1 9 9 
4 10 *1 1 *I 1 *1 1 4 

[311] 1 15 9 *1 *1 *1 1 1 1 
2 120 64 *I6  *16 *4 1 1 9 9 
3 40 16 *16 *1 1 *1 1 4 
4 8  4 *1 *1 1 1 
5 14 9 *9 *1 1 4 
6 3  1 *1 1 
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1,12. [ 2 13 8 [ 21 = [4 110  [ 3210 [ 3 1 110 [ 22 13 

[41] 1 6 
2 90 16 
3 180 36 4 
4 60 

[32] 1 18 1 
2 576 36 4 
3 192 
4 192 36 36 
5 64 

[311] 1 30 3 
2 960 108 12 
3 320 
4 64 12 *12 
5 192 
6 6  

[221] 1 64 4 4 
2 64 
3 64 12 *12 
4 192 
5 6  

1 1 1 1 1 1 
16 16 1 1 1 *1 *1 *1 
*1 *1 4 *1 *1 1 1 *4 
1 *1 1 *1 1 *1 

1 1 1 1 1 *1 *1 *1 
*1 *1  64 *16 *16 16 16 *64 

1 * I  16 *16 16 *16 
*9 *9 16 *4 *4 *4 *4 16 

9 *9 4 *4 *4 4 

3 3 "3 *3 *3 3 3 3 
*3 *3 *192 48 48 *48 *48 192 

3 *3 *48 48 *48 48 
3 3 

*27 27 

*1 *1 *16 4 4 4 4 * I6  
3 *3 *12 12 12 *12 
3 3 

*27 27 

[41] 1 6 
2 90 12 12 12 
3 180 27 27 27 27 3 3 *12 
4 60 12 12 3 *3 12 3 *3 3 *3 

[32] 1 18 *3 *3 *3 
2 576 27 27 *lo8 *I08 *12 *12 48 
3 192 12 12 3 *3 *48 *12 12 *12 12 
4 192 *27 *27 
5 64 12 *12 *3 3 

[311] 1 30 * l  *1 *1 
2 960 81 81 *36 *36 *4 *4 16 

4 64 *1 *1 4 4 *4 *4 16 
5 192 36 *4 *1 1 16 4 *4 *36 36 

3 320 36 36 9 *9 *16 *4 4 *4 4 

6 6  1 *1 1 1 *1 1 

[221] 1 64 *3 *3 
2 64 4 *4 *1 1 
3 64 *1 *1 *4 *4 4 4 *16 
4 192 36 *4 *1 
5 6  1 *1 1 *1 1 *1 

1 *16 *4 4 36 *36 
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-1-3 “f 

N 

- - N  
- -  

- “ N e  * 

N 
N N  
- - N  

N8” -,e * 

N - - N  
- -  

m 
N - Y 

-t -mt -,N * *  

- N  - c i  c 

- P I  -10 -c * *  

-f -1: N,C 

-10 -10 -e -IT, * *  

-,r -,e, -,c ” C  * * 

- 1 -  -IC, --c -10 * *  

- c i  -IN 

N 
N N  
N N  
e - N  

- w  - N  * 

- P I  - P i  

9 i: 9 

I1 
N 
N 
N 
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2.3(e) 

(12,23) (13,221 (22, 13) (23, 12) 

1 1223 6 

122 f *1 
3 

1 1 
6 J 
1 *1 
6 

1 * 1  a *1 123 & 5 
2 

12 (5 

23 
1 *1  1 *1 

6 5 - 

1223 = abbc, abba 

2.4(a) [2]0[11] 

(11,;) ( 1 2 4  ( 1 3 4  

113 * a  
2 

1 3 
12 4 
- 

3 

1123 = aabc, aaba, aaap  

2.4(c) 

(12,331 (13,23) (23, 13) (33,12) 

1233 f 
123 4 
3 
133 0 
2 

1 - 1 1 
3 3 a 

*1 0 0 5 

1 9 *L 0 

1 *1 *1 1 
5 12 3 a 

33 

1233 = abcc 

2.4( b) 

2 1 122 J 3 0 
3 

123 *L 12 i; a 
2 
12 4 4 

1 3 

1 1 - *1 

L 

3 

I223 = abbc, abba 

123 
3 

1 
2 

1 I 0 

133 *$ 
2 

1 1 
4 I 

3 

1233 = abcc 

112 0 
3 

1 2 
3 J 0 

1 9 
16 *1 48 - - 113 24 

2 
11 
2 
3 

3 3 *1 *3 
8 i6 16 

11 
23 

1 
4 

1 *? *3 
5 

1123 = aabc, aaba, aanp  
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2.5( b) 2.5(c) 

2 1 122 0 3 3 0 
3 

2 

2 
3 

23 

1 9 
16 
- *i 123 a a 24 

3 3 *L *1 12 8 16 8 16 

1 1 *3 *1 12 4 8 8 

1 1 123 1 0 3 4 

3 

133 0 4 8 8 
2 

13 0 4 8 

3 I *1 

1 3 *3 

L 
3 

12 2 0 
33 

1 * L  *1 

1223 = abbc, abba 1233 = abcc 

2.6(a) [11]@[11] 2.6( b) 

1 1 11 f 2 12 4 

11 4 I 12 f I 

23 23 

2 2 
3 3 

1123 = aabc, aaba, aaap  

*1 *1 

1223 = abbc, abba 

Table 3. The SU(O/n) CGC for non-special Gel’fand basis. 

3 . l ( a )  [2]0[2] 3 . l (b)  

f f P > f f Y  f f Y , f f P  4 3 P Y  P x a P  

1 *1 
a P y  *+ I f f P Y  t I 
f f  P 

ffP I I f fP I I 
P Y  

1 1 *1 *1 

3.2(a) [2]@[11] 

I 
2 

*I a P Y  i 

f fP 
f f  

1 
6 

*L 
1 2  

*3 

f f  

Y 
2 1 

f f Y  0 5 J 

P 
f f  

2.6(c) 

1 12 4 I 

13 4 *1 
33 

L 
3 

1233 = abcc 

3 . l (c )  

1 
a p y  *f I 
Y 

f f Y  I 
P Y  

*l *1 

3.2( b) 

- 3 1 *L f fP 4 6 12 

P 

a y  0 J J 
P 
P 

Y 
1 2 
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3.2(c) 

1 
4 

*! 4 Y  t 

aP I 

Y 
1 I *I 

Y 
Y 

*I  *1  0 z 2 
P 
Y 

*3 - 1 ~ 3 
16 4 Y  ; s 16 

(I 

aP 8 24 48 16 

a 

3 1 *l *!% - 

Y 
*2 OY 0 0 3 

P 
U P  z 1 8 

*i 

(I 

1 I 3 *L 

3.3( b )  3.3(c) 

_ _ _ _ _ _ ~  

- 3 *a 
16 

*i aPY 2 16 

P 

Y 
*2 * 1  0 0 3 3 

P 
P 
f fP  
PY 

I I 
4 5 

*a *1 

3 *3 
crpy *a 0 s s 

.P z 0 8 

Y 
3 1 *I 

Y 
Y 

1 *1 *i 
0 2 

P 

f f Y  0 2 a z 
P Y  

Y 
1 I 1 

The values of the S U ( m / n )  CGC are m and n independent. Therefore, each 
CGC table in fact represents infinitely many tables of the same class. For example, in 
tables 1.3-1.6 by letting 1234 = abcd, abce, abde, acde, bcde, . . . abca, 
abcj3, . . . abdcu,. . .abap, abay, .  . . , we can get an infinite number of CGC tables. 

The Baird-Biedenharn phase convention (3.12) ensures that the CGC which are 
equivalent under SU(m) will have the same phase. For instance, in table 1.6, we let 

123 aab 12 aa 
4 b ' 34+bb' 

1234=aabb, + 

Using (3.4) and table 1.6, as well as table 2 in Chen et al  (1983b), we obtain the 
following table for the U(2) CGC 

aa ab  
b .  b ,  

b a 

aab , 
b 

1 

1 *I 
2 

aa 
bb 
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On restricting U(2) to SU(2), the above table becomes identical to table 1.1. 
Analogously, in table 1.11, we let 

12345 = aabbc. 141 I 1 = -3 

Using the norm R["]'" for S(2)-S(5) in Chen and Gao (1981), and (3.4) we obtain 
the following table for the U(3) CGC 

aabb 
C 

aabc 
b 

L 
i 

*A. 
I O  

f 

1 
10 

~ 

0 

4 
5 

aab 
2 *z 1 : 5 5 

On restricting U(3) to SU(3), b +/ab).  I C  i 
Note added in proof. Although under the Baird-Biedenharn phase convention, the CGC of U( m) and SU( m)  
have been identified, the relation between the CGC of U ( m / n )  and S U ( m / n )  is not yet clear. Therefore 
i t  is safer to replace all the terms 'the CGC of SU(m/n) '  in the present paper by 'the cGC of U ( m / n ) ' .  
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