The Clebsch-Gordan coefficient for $\mathrm{SU}(\mathrm{m} / \mathrm{n})$ Gel'fand basis

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1984 J. Phys. A: Math. Gen. 17481
(http://iopscience.iop.org/0305-4470/17/3/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:54

Please note that terms and conditions apply.

The Clebsch-Gordan coefficient for $\mathbf{S U}(\boldsymbol{m} / \boldsymbol{n})$ Gel'fand basis

Jin-Quan Chen \dagger, Mei-Juan Gao ${ }^{\dagger}$ and Xuan-Gen Chen \ddagger
\dagger Department of Physics, Nanjing University, Nanjing, People's Republic of China
\ddagger Department of Physics, Engineering Institute of Engineer Corps, CPLA, Nanjing, People's Republic of China

Received 10 June 1983

Abstract

The outer-product reduction coefficients (ORC) of the graded state permutation group, which differ from the ORC of the ordinary permutation group only in signs, have been identified with the Clebsch-Gordan coefficients (CGC) for the special Gel'fand basis of the graded unitary group $\operatorname{SU}(m / n)$. The CGC for a general Gel'fand basis of $\operatorname{SU}(m / n)$ can be easily obtained from those for the special one. Tables of the $\operatorname{SU}(m / n)$ CGC are presented which are valid for arbitrary m and n.

1. Introduction

The graded unitary group $\operatorname{SU}(m / n)$ has recently become a topic of interest in physics in the context of supersymmetries relating particles with different statistics (Ne'eman 1979, Dondi and Jarvis 1979, 1981, Iachello 1980). The first evidence for the existence of the supersymmetry in nature has been reported in the field of nuclear physics (Iachello 1980, Balantekin et al 1981). Many properties of nuclei in the Os-Pt region, including excitation energies, electromagnetic transition rates and transfer reaction intensities, can be described fairly well (within about 30%) by a $U(6 / 4)$ supersymmetry.

The Casimir operators, representations, and branching rules of the graded unitary group have been studied extensively (Jarvis and Green 1979, Dondi and Jarvis 1981, Balantekin and Bars 1981, Balantekin 1982, Han et al 1981, Sun and Han 1981, Chen et al 1983b). More recent progress on the Clebsch-Gordan coefficients (CGC) and isoscalar factors (ISF) or the coefficients of fractional parentage (CFP) of the graded unitary group have been sketched previously in Chen et al (1983a), followed by detailed expositions on several separate subjects, such as the formulae for the Gel'fand matrix elements of the generators E_{i-1}^{i} of $\mathrm{U}(m / n)$ (Chen and Chen 1983), the identification of the $\mathrm{U}(m p+n q / m q+n p) \supset \mathrm{U}(m / n) \times \mathrm{U}(p / q)$ cFp with $\mathrm{U}(m n) \supset$ $\mathrm{U}(m) \times \mathrm{U}(n)$ CFP as well as with the permutation group $\mathrm{S}(f) \supset \mathrm{S}\left(f_{1}\right) \times \mathrm{S}\left(f_{2}\right)$ ISF, and the identification of the $\mathrm{U}(m+p / n+q) \supset \mathrm{U}(m / n) \times \mathrm{U}(p / q)$ CFP with the $\mathrm{U}(m+n) \supset$ $\mathrm{U}(m) \times \mathrm{U}(n)$ CFP as well as with the permutation group outer-product isf for $\mathrm{S}(f) \supset$ $\mathbf{S}\left(f_{1}\right) \times \mathbf{S}\left(f_{2}\right)$, along with the tabulation of the one-body CFP for the aforementioned group chains (Chen et al $1983 \mathrm{c}, \mathrm{d}$). What the present paper is concerned with is the construction of the CGC for the Gel'fand basis of $\operatorname{SU}(m / n)$.

As we know, several methods are available for calculating the CGC of $\mathrm{SU}(n)$ in the Gel'fand basis. They mainly fall into the following two categories. One is the unitary group approach (for SU(3): de Swart 1963, McNamee and Chilton 1964, Bickerstaff et al 1982, Sun 1980; for SU(4): Haacke et al 1976; for $\operatorname{SU}(n)$: Baird
and Biedenharn 1963), and the other is the permutation group approach based on the duality between the unitary group and the permutation group (Chen et al 1978a). A distinguishing feature of the latter approach lies in the fact that it is rank independent. Another advantage is that it turns out to be the most direct way for extending the calculation of the CGC of the ordinary unitary group to that of the graded unitary group.

The kernel of the permutation group approach to the $\operatorname{SU}(n)$ cGC is the identification of the quasi-standard basis of the permutation group with the Gel'fand basis of the unitary group (Chen et al 1977) and the introduction of a versatile coefficient, the so-called outer-product reduction coefficient (ORC) of the permutation group (Chen et al 1978a). It was shown that the ORC is the coupling coefficient for the $\mathrm{U}(m+n) \supset$ $\mathrm{U}(m) \times \mathrm{U}(n)$ irreducible basis (IRB) (Chen et al 1978b, 1983c), and the cGC for the special Gel'fand basis of $\operatorname{SU}(n)$. Furthermore, from it we can obtain the CFP for $\mathrm{U}(m+n) \supset \mathrm{U}(m) \times \mathrm{U}(n)$ and $\mathrm{U}(m / n) \supset \mathrm{U}(m) \times \mathrm{U}(n)$ etc (Chen et al 1983c), as well as the CGC for a general Gel'fand basis of $\operatorname{SU}(n)$ (Chen et al 1978a). The present work will demonstrate that the ORC for the graded state permutation group, which are the same as the ordinary ORC up to sign factors, are the CGC for the special Gel'fand basis of $\operatorname{SU}(m / n)$, and that the CGC for a general Gel'fand basis of $\operatorname{SU}(m / n)$ can be obtained from those for the special Gel'fand basis. Tables of the $\operatorname{SU}(m / n)$ cGc, valid for arbitrary m and n, and containing the $\mathrm{SU}(n)$ CGC as its special case, are presented.

2. The orc for the graded state permutation group

We shall follow the notation of Chen et al (1983c) as closely as possible. The readers are referred to this reference for any unexplained notation in this paper.

The ORC are the coefficients of a unitary matrix which reduces the outer-product of the irreps $\left[\sigma_{1}\right]$ and $\left[\sigma_{2}\right]$ of the permutation groups $S\left(f_{1}\right)$ and $S\left(f_{2}\right)$, respectively, into the direct sum of the irreps $[\sigma]$ of $\mathrm{S}(f)$ with $f=f_{1}+f_{2}$,

$$
\begin{equation*}
\left[\sigma_{1}\right] \otimes\left[\sigma_{2}\right]=\sum_{\sigma} \oplus\left\{\sigma_{1} \sigma_{2} \sigma\right\}[\sigma] \tag{2.1}
\end{equation*}
$$

where the integers $\left\{\sigma_{1} \sigma_{2} \sigma\right\}$ are decided by the Littlewood rule. In other words, the ORC are the expansion coefficients for expanding the Yamanouchi basis (YB) $\left|Y_{r}^{\sigma}(\omega)\right\rangle$ of $\mathbf{S}(f)$ in terms of the YB $\left|Y_{r_{1}}^{\sigma_{1}}\left(\omega_{1}\right)\right\rangle$ and $\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}\right)\right\rangle$ of $\mathbf{S}\left(f_{1}\right)$ and $S\left(f_{2}\right)$ acting on the coordinate indices represented by the normal order sequences (ω_{1}) and (ω_{2}), respectively

$$
\begin{align*}
& \left|Y_{r}^{[\sigma] \theta}(\omega)\right\rangle=\sum_{r_{1} r_{2} \omega_{1} \omega_{2}} C_{\sigma_{1} r_{1} \omega_{1}, \sigma_{2} r_{2} \omega_{2}}^{[\sigma]}\left|Y_{r_{1}}^{\sigma_{1}}\left(\omega_{1}\right)\right\rangle\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}\right)\right\rangle, \tag{2.2}\\
& (\omega)=(12 \ldots f), \quad \theta=1,2, \ldots\left\{\sigma_{1} \sigma_{2} \sigma\right\},
\end{align*}
$$

where $Y_{r_{i}}^{\sigma_{i}}\left(\omega_{i}\right)$ denote the standard Young tableaux of $\mathrm{S}\left(f_{i}\right)$ acting on $\left(\omega_{i}\right)$. More concisely, (2.2) can be rewritten as

$$
\begin{align*}
& |[\sigma] \theta m\rangle=\sum_{m_{1} m_{2}}\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle\left|\sigma_{1} m_{1}\right\rangle\left|\sigma_{2} m_{2}\right\rangle, \tag{2.3}\\
& m=r \omega, \quad m_{i}=r_{i} \omega_{i}
\end{align*}
$$

Now let us carry over the discussion of the orc of the ordinary permutation group S(f) into that of the graded state permutation group $\mathscr{\mathscr { L }}(f)$.

Suppose there are $f=m+n$ single particle (SP) states

$$
A_{i}= \begin{cases}a_{i}, & i=1,2, \ldots m \tag{2.4}\\ \alpha_{i-m}, & i=m+1, \ldots m+n\end{cases}
$$

with a_{i} and α_{j} representing the bosonic (commuting) and fermionic (anticommuting) SP states respectively. The ordering of the sp states is specified as $A_{1}<A_{2}<\ldots<A_{f}$. A graded state permutation $\left(A_{i} A_{i}\right)^{\circ} \in \mathscr{\mathscr { F }}(f)$ is defined by its action on f-particle product states (Chen et al 1983b):

$$
\begin{align*}
\left(A_{i} A_{l}\right)^{\circ} \mid A_{p} \ldots & \left.\ldots A_{i} A_{j} \ldots A_{k} A_{l} \ldots A_{q}\right\rangle \\
& =\left[\begin{array}{cc}
A_{i} & \vdots \\
A_{i} & \vdots \\
& A_{l}
\end{array}\right]\left[\begin{array}{cc}
& A_{j} \\
A_{l} & \vdots \\
& A_{k}
\end{array}\right]\left|A_{p} \ldots A_{l} A_{j} \ldots A_{k} A_{i} \ldots A_{q}\right\rangle, \tag{2.5}
\end{align*}
$$

where the first and second factors are the sign factors (Jarvis and Green 1979),

$$
\left[\begin{array}{cc}
& A_{j} \tag{2.6}\\
A_{i} & \vdots \\
& A_{k}
\end{array}\right]=\left[A_{i} A_{j}\right] \ldots\left[A_{i} A_{k}\right]
$$

and

$$
\left[A_{i} A_{J}\right]= \begin{cases}-1 & \text { for } A_{i} \text { and } A_{j} \text { being both fermionic } \tag{2.7}\\ +1 & \text { otherwise } .\end{cases}
$$

The sign factor of (2.6) comes from the fact that for the sp state A_{i} in (2.5) to reach to its final position it has to cross over the sp states $A_{p}, \ldots A_{k}$.

Instead of grouping the f ordinals into two nor mal order sequences $\left(\omega_{1}\right)$ and $\left(\omega_{2}\right)$, we now group the f SP states

$$
\begin{equation*}
(\dot{\omega})=\left(A_{1} A_{2} \ldots A_{f}\right) \tag{2.8}
\end{equation*}
$$

into the two normal order states

$$
\begin{align*}
& \left(\dot{\omega}_{i}\right)=\left(A_{1}^{(i)} A_{2}^{(t)} \ldots A_{f_{t}^{(t)}}^{(t)}, \quad i=1,2 .\right. \\
& A_{1}^{(i)}<A_{2}^{(1)}<\ldots<A_{f_{1}}^{(1)}, \tag{2.9}
\end{align*}
$$

The YB of $\dot{\mathscr{G}}\left(f_{i}\right)$ acting on the sP states $\left(\dot{\omega}_{i}\right)$ can be designated by

$$
\begin{equation*}
\left|\sigma_{i} m_{i}\right\rangle^{\circ}=\left|Y_{r_{i}}^{\sigma_{i}}\left(\AA_{i}\right)\right\rangle, \tag{2.10}
\end{equation*}
$$

where $Y_{r_{i}^{\prime}}^{\sigma_{i}}\left(\dot{\omega}_{i}\right)$ are the graded Weyl tableaux resulted from filling the Young diagram $Y^{\sigma_{t}}$ with the sp states $\left(\dot{\omega}_{l}\right)$ according to the ordering specified by the Yamanouchi symbol r_{i}.

We now claim that the counterpart of (2.3) for the graded state permutation group is

$$
\begin{equation*}
|[\sigma] \theta m\rangle^{\circ}=\sum_{m_{1} m_{2}}\left[\omega_{1}, \omega_{2}\right]\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle\left|\sigma_{1} m_{1}\right\rangle^{\circ}\left|\sigma_{2} m_{2}\right\rangle^{\circ} \tag{2.11}
\end{equation*}
$$

where $\left[\omega_{1}, \omega_{2}\right]$ are sign factors

$$
\left.\left[\omega_{1}, \omega_{2}\right]=\prod_{\substack{i \in \dot{\omega}_{1, j \in \dot{\omega}_{2}} \tag{2.12}\\
i>j}}\left[\begin{array}{cc}
j_{1} \\
i & \vdots \\
& j_{p}
\end{array}\right]=\prod_{i \in \dot{\omega}_{1}, j \in \dot{\omega}_{2}}^{1>j} \right\rvert\,\left[\begin{array}{cc}
i_{1} & \\
\vdots & j \\
i_{q} &
\end{array}\right] .
$$

Otherwise stated, the ORC for the graded state permutation group and the ordinary permutation group are the same except for the difference in signs. To show this, we only need to demonstrate that the basis vector $\left[\omega_{1}, \omega_{2}\right]\left|\sigma_{1} m_{1}\right\rangle^{\circ}\left|\sigma_{2} m_{2}\right\rangle^{\circ}$ transforms under the graded state permutation $\mathscr{\mathscr { P }}$ in exactly the same way as the basis vector $\left|\sigma_{1} m_{1}\right\rangle\left|\sigma_{2} m_{2}\right\rangle$ under the ordinary permutation p.

The action of a permutation p on a normal order sequence $\left(\omega_{12}\right)=\left(\omega_{1}, \omega_{2}\right)$ can be written as

$$
\begin{equation*}
p\left(\omega_{12}\right)=(\tilde{\omega}) \tag{2.13a}
\end{equation*}
$$

where $(\tilde{\omega})$ is usually not a normal order sequence, but can be brought to a normal order sequence $\left(\omega_{12}^{\prime}\right)=\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ through the permutation

$$
\begin{equation*}
p_{1} p_{2}=\binom{\tilde{\omega}}{\omega_{12}^{\prime}}, \quad p_{i} \in \mathrm{~S}\left(f_{i}\right) \text { acting on }\left(\omega_{i}^{\prime}\right) \tag{2.13b}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
p\left(\omega_{12}\right)=p_{1} p_{2}\left(\omega_{12}^{\prime}\right) . \tag{2.13c}
\end{equation*}
$$

Let us introduce the order-preserving permutation

$$
\begin{equation*}
Q_{\omega_{12}}=\binom{\omega}{\omega_{12}}=\binom{12 \ldots f}{\omega_{1}, \omega_{2}} \tag{2.14}
\end{equation*}
$$

which brings the natural sequence $(\omega)=(12 \ldots f)$ into the normal order sequence $\left(\omega_{12}\right)=\left(\omega_{1}, \omega_{2}\right)$. Using the order-preserving permutation (2.14), from (2.13c) we have

$$
\begin{equation*}
p Q_{\omega_{12}}=p_{1} p_{2} Q_{\omega_{12}} \tag{2.15}
\end{equation*}
$$

Therefore the basis vectors $\left|\sigma_{1} m_{1}\right\rangle\left|\sigma_{2} m_{2}\right\rangle$ transform as
$p\left[\left|Y_{r_{1}}^{\sigma_{1}}\left(\omega_{1}\right)\right\rangle\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}\right)\right\rangle\right]=\sum_{r_{1}^{\prime} r_{2}^{\prime}} D_{r_{1}^{\prime} r_{2}}^{\sigma_{2}}\left(p_{1}\right) D_{r_{2}^{2} r_{2}}^{\sigma_{2}^{2}}\left(p_{2}\right)\left|Y_{r_{1}^{\prime}}^{\sigma_{1}}\left(\omega_{1}^{\prime}\right)\right\rangle\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}^{\prime}\right)\right\rangle$,
where D^{σ} are the Young-Yamanouchi matrices.
Now turn to the graded state permutation group. Let us call

$$
\begin{equation*}
|\dot{\omega}\rangle=\left|A_{1} A_{2} \ldots A_{f}\right\rangle, \quad\left|\dot{\omega}_{12}\right\rangle=\left|\dot{\omega}_{1}, \dot{\omega}_{2}\right\rangle \tag{2.17}
\end{equation*}
$$

the natural and normal order state respectively. In parallel to (2.14), the following operator

$$
\begin{equation*}
\stackrel{\circ}{Q}_{\omega_{12}}=\binom{\dot{\omega}}{\dot{\omega}_{12}} \tag{2.18}
\end{equation*}
$$

is called the order-preserving graded state permutation. It is easily seen that

$$
\begin{equation*}
\dot{Q}_{\omega_{12}}|\dot{\omega}\rangle=\left[\omega_{1}, \omega_{2}\right]\left|\dot{\omega}_{12}\right\rangle \tag{2.19}
\end{equation*}
$$

Due to the isomorphism between $S(f)$ and $\mathscr{\mathscr { F }}(f)$, in analogy with (2.15) we have

$$
\begin{equation*}
\mathscr{\mathscr { P }}_{\omega_{12}}=\stackrel{\circ}{\mathscr{P}}_{1} \dot{\mathscr{P}}_{2} \dot{Q}_{\omega_{i 2}}, \quad \mathscr{P}_{i} \in \mathscr{\mathscr { P }}\left(f_{i}\right) \text { acting on }\left(\dot{\omega}_{i}^{\prime}\right) \tag{2.20}
\end{equation*}
$$

Multiplying (2.20) from the right by $|\dot{\omega}\rangle$,

Then using (2.19), one has

$$
\begin{equation*}
\mathscr{P}\left[\omega_{1}, \omega_{2}\right]\left|\dot{\omega}_{12}\right\rangle=\mathscr{\mathscr { P }}_{1} \mathscr{\mathscr { P }}_{2}\left[\omega_{1}^{\prime}, \omega_{2}^{\prime}\right]\left|\dot{\omega}_{12}^{\prime}\right\rangle . \tag{2.21b}
\end{equation*}
$$

Hence the transformation law for the basis vectors $\left[\omega_{1}, \omega_{2}\right]\left|\sigma_{1} m_{1}\right\rangle^{\circ}\left|\sigma_{2} m_{2}\right\rangle^{\circ}$ is

$$
\begin{align*}
\mathscr{P}\left(\left[\omega_{1}, \omega_{2}\right]\right. & \left.\left.Y_{r_{1}}^{\sigma_{1}}\left(\mathscr{\omega}_{1}\right)\right\rangle\left|Y_{r_{2}}^{\sigma_{2}}\left(\mathscr{\omega}_{2}\right)\right\rangle\right) \\
& =\sum_{r_{1}^{\prime} r_{2}^{\prime}} D_{r_{1}^{2} r_{1}}^{\sigma_{1}}\left(p_{1}\right) D_{r_{2} r_{2}}^{\sigma_{2}}\left(p_{2}\right)\left(\left[\omega_{1}^{\prime}, \omega_{2}^{\prime}\right]\left|Y_{r_{1}}^{\sigma_{1}}\left(\mathscr{\omega}_{1}^{\prime}\right)\right\rangle\left|Y_{r_{2}}^{\sigma_{2}}\left(\AA_{2}^{\prime}\right)\right\rangle\right) . \tag{2.22}
\end{align*}
$$

Comparing (2.22) with (2.16) shows that (2.11) is correct.
An example of ($2.13 c$) and ($2.21 b$) is

$$
p_{36}(134,256)=(\tilde{\omega})=(164,253)=p_{46} p_{35}(146,235)
$$

$$
\left(A_{3} A_{6}\right)^{\circ}\left[\begin{array}{ll}
A_{2} & A_{3} \tag{2.23}\\
A_{4}
\end{array}\right]\left|A_{1} A_{3} A_{4}, A_{2} A_{5} A_{6}\right\rangle
$$

$$
=\left(A_{4} A_{6}\right)^{\circ}\left(A_{3} A_{5}\right)^{\circ}\left[\begin{array}{ll}
A_{4} & A_{2} \\
A_{6} & A_{3}
\end{array}\right]\left[A_{6} A_{5}\right]\left|A_{1} A_{4} A_{6}, A_{2} A_{3} \dot{A_{5}}\right\rangle
$$

It should be noted that although both the graded coordinate permutation group $\dot{S}(f)$ and the graded state permutation group $\mathscr{\mathscr { S }}(f)$ are isomorphic to the ordinary permutation group $S(f)$, a dissimilarity exists between $\mathrm{S}(f)$ and $\mathscr{S}(f)$, i.e. the orc of $\stackrel{\mathrm{S}}{\mathrm{S}}(f)$ is identical with that of $\mathrm{S}(f)$ (Chen et al 1983c) but not with that of $\mathscr{\mathscr { L }}(f)$ on account of the extra sign factor $\left[\omega_{1}, \omega_{2}\right]$. In order to fully understand this dissimilarity, it is instructive to supplement the proof on the equality of the ORC of $\dot{S}(f)$ and that of $S(f)$, which is omitted in the paper of Chen et al (1983).

We must point out that an isolated yв of $\dot{S}(f)$ is meaningless, in contrast to the YB of $\mathscr{\mathscr { F }}(f)$, which unambiguously represents a special Gel'fand basis of $\operatorname{SU}(m / n)$. The yb of $\dot{S}(f)$ has a definite meaning only when it is used in conjunction with an IRB of $\operatorname{SU}(m / n)$. Let the IRB of $\dot{S}\left(f_{i}\right)$ and $\operatorname{SU}(m / n)$ be denoted by

$$
\begin{equation*}
\left|Y_{r_{i}^{\prime}}^{\sigma_{i}}\left(\omega_{i}\right)\right\rangle^{\circ} \equiv\left|Y_{r_{1}^{\prime}}^{\sigma_{i}}\left(\omega_{i}\right), W_{s_{1}^{\prime}}^{\sigma_{1}}\right\rangle^{\circ}=\dot{P}_{r_{1}}^{\left[\sigma_{1}\right] s_{i}}\left(\omega_{i}\right)\left|A_{1}^{(i)} A_{2}^{(i)} \ldots A_{f_{1}}^{(i)}\right\rangle \tag{2.24}
\end{equation*}
$$

where equation (30) in Chen et al (1983b) has been used, $W_{s_{i}}^{\sigma_{i}}$ denotes the Weyl tableau, $\stackrel{P}{P}_{r_{i}}^{\left[\sigma_{i}\right] s}\left(\omega_{i}\right)$ is the projection operator of $\stackrel{(}{S}\left(f_{i}\right)$ acting on the coordinate indices $\left(\omega_{i}\right)$. Whether $\left|Y_{r_{i}}^{\sigma_{i}}\left(\omega_{i}\right)\right\rangle^{\circ}$ represents a YB of $\stackrel{S}{S}(f)$ or $S(f)$ is entirely decided by whether $W_{s_{i}}^{\sigma_{i}}$ is a graded or ordinary Weyl tableau. The imparity of $\stackrel{S}{S}(f)$ and $\mathscr{\mathscr { S }}(f)$ is in fact a reflection of the difference between the coordinate indices and the state indices, the former being ungraded, while the latter are graded according to their being bosonic or fermionic. Therefore, in essence we only have one graded permutation group, i.e. the graded state permutation group, while the so-called graded coordinate permutation group $\grave{S}(f)$ is nothing other than the representation of the ordinary permutation group $\mathbf{S}(f)$ in a graded space. This point is quite clear from the definition of $\stackrel{S}{(} f)$ (see equation (10) in Chen et al (1983b)).

Now let us study the action of the permutation $\dot{p} \in \dot{S}(f)$ on the product of the basis vectors of (2.24). In view of the isomorphism between $\grave{S}(f)$ and $S(f)$, (2.13c) remains true for $\stackrel{\circ}{\mathbf{S}}(f)$. It thus follows that

$$
\begin{equation*}
\left.\dot{p}{\stackrel{\rho}{P_{1}}}_{\left[\sigma_{1}\right] s_{1}}^{(} \omega_{1}\right) \dot{P}_{r_{2}}^{\left[\sigma_{2}\right] s_{2}}\left(\omega_{2}\right)=\dot{p}_{1} \dot{p}_{2} P_{r_{1}}^{\left[\sigma_{1}\right] s_{1}}\left(\omega_{1}^{\prime}\right) P_{r_{2}}^{\left[\sigma_{2}\right] s_{2}}\left(\omega_{2}^{\prime}\right) . \tag{2.25}
\end{equation*}
$$

Using (2.24) and (2.25), we immediately obtain

$$
\begin{align*}
& \stackrel{\circ}{p}\left|Y_{r_{1}}^{\sigma_{1}}\left(\omega_{1}\right)\right\rangle^{\circ}\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}\right)\right\rangle^{\circ}=\stackrel{\circ}{p_{1} \dot{p}_{2}}\left|Y_{r_{1}}^{\sigma_{1}}\left(\omega_{1}^{\prime}\right)\right\rangle^{\circ}\left|Y_{r_{2}}^{\sigma_{2}}\left(\omega_{2}^{\prime}\right)\right\rangle^{\circ} \\
&=\sum_{r_{1}^{\prime} r_{2}^{\prime}} D_{r_{1}^{2} r_{1}}^{\sigma_{1}}\left(p_{1}\right) D_{r_{2}^{2} r_{2}}^{\sigma_{2}}\left(p_{2}^{\prime}\right)\left|Y_{r_{1}^{\prime}}^{\sigma_{1}}\left(\omega_{1}^{\prime}\right)\right\rangle^{\circ}\left|Y_{r_{2}^{\prime}}^{\sigma_{2}}\left(\omega_{2}^{\prime}\right)\right\rangle^{\circ} . \tag{2.26}
\end{align*}
$$

Comparing (2.26) with (2.16) we see that the ORC of $\stackrel{\circ}{S}(f)$ and $S(f)$ are indeed the same.

3. The cGC of $\mathrm{SU}(m / n)$

According to Chen et al (1983b), when there are repeated sp states in $(\dot{\omega})$, the basis vector $|[\sigma] m\rangle^{\circ}=\left|Y_{r}^{\sigma}(\dot{\omega})\right\rangle$ becomes the un-normalised quasi-standard basis of the graded state permutation group, and the latter has been identified with the Gel'fand basis $|[\sigma] \omega\rangle^{\circ}$ of $\operatorname{SU}(m / n)$,

$$
\begin{equation*}
|[\sigma] m\rangle^{\circ}=\stackrel{R}{ }^{[\sigma] m}|[\sigma] w\rangle^{\circ}, \quad\left|\left[\sigma_{i}\right] m_{i}\right\rangle^{\circ}=R^{\left[\sigma_{t}\right] m_{i}}\left|\left[\sigma_{i}\right] w_{i}\right\rangle^{\circ}, \tag{3.1}
\end{equation*}
$$

where $|[\sigma] w\rangle^{\circ}$ and $\left.\left[\sigma_{i}\right] w_{i}\right\rangle^{\circ}$ are normalised Gel'fand bases of $\operatorname{SU}(m / n)$, and

$$
\begin{equation*}
\dot{R}^{[\sigma] m} \equiv \dot{R}^{[\sigma] r}(\dot{\omega}), \quad \dot{R}^{\left[\sigma_{i}\right] m_{t}} \equiv R^{\left[\sigma_{i}\right] r_{i}}\left(\dot{\omega}_{i}\right), \tag{3.2}
\end{equation*}
$$

are the normalisation constants depending on σ, r, ω and $\sigma_{i}, r_{i}, \omega_{i}$ respectively. The indices w and w_{i} label the graded Weyl tableaux. Notice that the correspondence between m and w, or m_{i} and w_{i} is not one-to-one, instead there may be several $m\left(m_{i}\right)$ corresponding to the same $w\left(w_{i}\right)$.

Equation (2.11) remains valid when some of the sp states in $(\dot{\omega})$ and $\left(\dot{\omega}_{i}\right)$ are identical. Inserting (3.1) into (2.11), we have

$$
\begin{align*}
|[\sigma] \theta w\rangle^{\circ}=(& \left.R^{[\sigma] m}\right)^{-1} \\
& \times \sum_{w_{1} w_{2}}\left(\sum_{m_{1} m_{2}}^{\prime}\left[\omega_{1}, \omega_{2}\right]\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle \dot{R}^{\left[\sigma_{1}\right] m_{1}} R^{\left[\sigma_{2}\right] m_{2}}\right)\left|\sigma_{1} w_{1}\right\rangle^{\circ}\left|\sigma_{2} w_{2}\right\rangle^{\circ} \tag{3.3}
\end{align*}
$$

where the prime in the second summation symbol means that the summation is restricted to those m_{i} which correspond to the same graded Weyl tableau w_{i}.

From (3.3) we obtain a relation between the CGC of $\operatorname{SU}(m / n)$ and the orc of $S(f)$:
${ }^{\circ}\left\langle[\sigma] \theta w \mid \sigma_{1} w_{1} \sigma_{2} w_{2}\right\rangle^{\circ}=\left(R^{[\sigma] m}\right)^{-1} \sum_{m_{1} m_{2}}^{\prime} R^{\left[\sigma_{1}\right] m_{1}} R^{\circ\left[\sigma_{2}\right] m_{2}}\left[\omega_{1}, \omega_{2}\right]\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle$,
where ${ }^{\circ}\left\langle[\sigma] \theta w \mid \sigma_{1} w_{1} \sigma_{2} w_{2}\right\rangle^{\circ}$ denotes the CGC of $\operatorname{SU}(m / n)$.

3.1. Special cases

3.1.1. The special Gel'fand basis. When all the sp states in $(\stackrel{\circ}{\omega})$ are different, $\mid[\sigma] m)^{\circ}$ and $\left|\left[\sigma_{i}\right] m_{i}\right\rangle^{\circ}$ become the special Gel'fand basis of $\mathrm{SU}(m / n)$, and all the norms $R^{[\sigma] m}$ and $\dot{R}^{\left[\sigma_{2}\right] m_{1}}$ are equal to one (Chen et al 1983b). Now the correspondence between m and w, or m_{i} and w_{i} is one-to-one, and (3.1) and (3.4) reduce to

$$
\begin{align*}
& |[\sigma] m\rangle^{\circ}=|[\sigma] w\rangle^{\circ}, \quad\left|\left[\sigma_{i}\right] m_{i}\right\rangle^{\circ}=\left|\left[\sigma_{i}\right] w_{i}\right\rangle^{\circ}, \tag{3.5}\\
& \circ \tag{3.6}\\
& \circ \\
& \circ \\
& \left.\hline \sigma] \theta w\left|\sigma_{1} w_{1} \sigma_{2} w_{2}\right\rangle^{\circ}=\left[\omega_{1}, \omega_{2}\right]\right\}[\sigma] \theta m\left|\sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle .
\end{align*}
$$

In other words, the CGC for the special Gel'fand basis of $\operatorname{SU}(m / n)$ is equal to the ORC of the graded state permutation group $\grave{S}(m+n)$.
3.1.2. Totally bosonic case. If all the SP states are bosonic, i.e. $n=0$, then $\left[\omega_{1}, \omega_{2}\right]=1$; the Gel'fand bases $|[\sigma] w\rangle^{\circ}$ and $\left|\left[\sigma_{i}\right] w_{i}\right\rangle^{\circ}$ of $\operatorname{SU}(m / 0)$ are the Gel'fand bases of the ordinary unitary group $\mathrm{SU}(m)$, and the norms $R^{[\sigma] m}$ and $R^{\left[\sigma_{]}\right] m_{1}}$ for $\dot{\mathrm{S}}(f)$ become the norms $R^{[\sigma] m}$ and $R^{\left[\sigma_{l}\right] m_{2}}$ for $S(f)$, respectively (Chen et al 1978a). In this case,
(3.4) reduces to the expression of the $\mathrm{SU}(m)$ cGc in terms of the ORC of $\mathrm{S}(f)$, first derived by Chen et al (1978a).

3.1.3. Totally fermionic case. (a) Without repeated SP states.

In this case, from (2.19) we know that the sign factor

$$
\begin{equation*}
\left[\omega_{1}, \omega_{2}\right]=\delta_{\omega_{12}} \tag{3.7}
\end{equation*}
$$

where $\delta_{\omega_{12}}$ is the parity associated with the normal order sequence (ω_{12}) and $\delta_{\omega_{12}}= \pm 1$ as the number of transpositions required to change the natural sequence ($12 \ldots f$) into the normal order sequence (ω_{12}) is even or odd.

Attach the quantum numbers for the graded coordinate permutation group $\dot{S}(f)$ to the bases in (2.11) and using (3.7), we have
$\left|\begin{array}{c}{[\sigma] \theta} \\ \sigma_{1} s_{1} \sigma_{2} s_{2}, m\end{array}\right\rangle^{\circ}=\sum_{m_{1} m_{2}}\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle \delta_{\omega_{12}}\left|\begin{array}{c}\sigma_{1} \\ s_{1}, m_{1}\end{array}\right\rangle^{\circ}\left|\begin{array}{c}\sigma_{2} \\ s_{2}, m_{2}\end{array}\right\rangle^{\circ}$.
Recall that $m_{i}=r_{i} \omega_{i}$, and r_{i} and s_{i} are the Yamanouchi numbers. The left-hand side of (3.8) is now the $\stackrel{S}{S}(f) \supset \stackrel{\circ}{S}\left(f_{1}\right) \times \stackrel{\circ}{S}\left(f_{2}\right)$ IRB and the $\mathrm{SU}(m / n)$ Gel'fand basis (Chen et al 1983c).

According to (31b) in Chen et al (1983b) and (6.5) in Chen et al (1983c), the IRB of $\mathrm{SU}(0 / n)$ and $\mathrm{SU}(n)$ are related as

$$
\begin{align*}
& \left|\begin{array}{c}
{\left[\sigma_{i}\right]} \\
s_{i}, m_{i}
\end{array}\right\rangle^{\circ}=\Lambda_{s_{1}}^{\sigma_{1}} \Lambda_{r_{i}}^{\sigma_{i}}\left|\begin{array}{c}
{\left[\tilde{\sigma}_{i}\right]} \\
\tilde{s}_{i}, \tilde{m}_{i}
\end{array}\right\rangle \tag{3.9a}\\
& \left|\begin{array}{c}
{[\sigma] \theta} \\
\sigma_{1} s_{1} \sigma_{2} s_{2}, m
\end{array}\right\rangle^{\circ}=\varepsilon\left(\sigma_{1} \sigma_{2} \sigma \theta\right) \Lambda_{s_{1}}^{\sigma_{1}} \Lambda_{s_{2}}^{\sigma_{2}} \Lambda_{r}^{\sigma}\left|\begin{array}{c}
{[\tilde{\sigma}] \theta} \\
\tilde{\sigma}_{1} \tilde{s}_{1} \tilde{\sigma}_{2} \tilde{s}_{2}, \tilde{m}
\end{array}\right\rangle, \tag{3.9b}
\end{align*}
$$

where $\tilde{m}_{i}=\tilde{r}_{i} \omega_{i}$ and $\tilde{m}=\tilde{r} \omega$, and $\varepsilon\left(\sigma_{1} \sigma_{2} \sigma \theta\right)$ is a phase factor. On the other hand, according to (Chen et al 1978a, Chen and Gao 1981), the ORC has the property that
$\left\langle[\sigma] \theta m \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle \delta_{\omega_{12}}=\varepsilon\left(\sigma_{1} \sigma_{2} \sigma \theta\right) \Lambda_{r_{1}}^{\sigma_{1}} \Lambda_{r_{2}}^{\sigma_{2}} \Lambda_{r}^{\sigma}\left\langle[\tilde{\sigma}] \theta \tilde{m} \mid \tilde{\sigma}_{1} \tilde{m}_{1} \tilde{\sigma}_{2} \tilde{m}_{2}\right\rangle$.
Combining (3.8) with (3.9) we get

$$
\left|\begin{array}{c}
{[\tilde{\sigma}] \theta} \tag{3.10a}\\
\tilde{\sigma}_{1} \tilde{s}_{1} \tilde{\sigma}_{2} \tilde{s}_{2}, \tilde{m}
\end{array}\right\rangle=\sum_{m_{1} m_{2}}\left\langle[\tilde{\sigma}] \theta \tilde{m} \mid \tilde{\sigma}_{1} \tilde{m}_{1} \tilde{\sigma}_{2} \tilde{m}_{2}\right\rangle\left|\begin{array}{c}
{\left[\tilde{\sigma}_{1}\right]} \\
\tilde{s}_{1}, \tilde{m}_{1}
\end{array}\right\rangle\left|\begin{array}{c}
{\left[\tilde{\sigma}_{2}\right]} \\
\tilde{s}_{2}, \tilde{m}_{2}
\end{array}\right\rangle .
$$

Suppressing the quantum numbers for the coordinate permutation group and replacing the summation indices m_{1} and m_{2} with \tilde{m}_{1} and \tilde{m}_{2}, it becomes

$$
\begin{equation*}
|[\tilde{\sigma}] \theta \tilde{m}\rangle=\sum_{\tilde{m}_{1} \tilde{m}_{2}}\left\langle[\tilde{\sigma}] \theta \tilde{m}_{1} \mid \tilde{\sigma}_{1} \tilde{m}_{1} \tilde{\sigma}_{2} \tilde{m}_{2}\right\rangle\left|\tilde{\sigma}_{1} \tilde{m}_{1}\right\rangle\left|\tilde{\sigma}_{2} \tilde{m}_{2}\right\rangle \tag{3.10b}
\end{equation*}
$$

Hence we see that this case reduces to the totally bosonic case.
(b) With repeated SP states.

From (44a) in Chen et al (1983b), as well as (3.7), (3.9c) and (3.4), we can show that

$$
\begin{equation*}
{ }^{\circ}\left\langle[\sigma] \theta w \mid \sigma_{1} w_{1} \sigma_{2} w_{2}\right\rangle^{\circ}=\varepsilon\left\langle[\tilde{\sigma}] \theta \tilde{w} \mid \tilde{\sigma}_{1} \tilde{w}_{1} \tilde{\sigma}_{2} \tilde{w}_{2}\right\rangle \tag{3.11}
\end{equation*}
$$

where ε is a sign factor depending on σ_{1}, σ_{2} and σ as well as on the component indices w_{1}, w_{2} and w. Equation (3.11) shows that the totally fermionic case with repeated sp states again corresponds to the totally bosonic case. For instance, tables 3.3(a), (b), (c) correspond to tables $2.5(a),(b),(c)$, respectively.

3.2. Phase convention

We use the Baird-Biedenharn (1965) phase convention, i.e. demanding that the CGC of the highest weight (HW) state be real positive,

$$
\begin{equation*}
\left\langle[\sigma] \theta H W \mid \sigma_{1} H W_{1}, \sigma_{2} w_{2}\right\rangle>0 . \tag{3.12}
\end{equation*}
$$

This in turn fixes the overall phase of the orc (Chen and Gao 1981). The BairdBiedenharn phase convention is a generalisation of the Condon-Shortley phase convention for the $\mathrm{SU}(2) \mathrm{cGc}$. For example, tables 2.1, 2.2(a), $(b), 2.3(a),(b),(c)$ are precisely the usual SU(2) cGC.

4. Tables of the $\mathrm{SU}(m / n) \mathrm{cGc}$

In this section we present some tables for the $\mathrm{SU}(m / n)$ cGc. The tables are classified into three types. All the table headings refer to the graded Weyl tableaux, but for simplicity, we have deleted all the small circles 'o'-the tags for the IRB of the graded unitary group $\mathrm{SU}(m / n)$.

4.1. Special Gel'fand basis

From (3.6) and the ORC in Chen and Gao (1981), we immediately obtain the cGc for the $\operatorname{SU}(m / n)$ special Gel'fand basis, listed in tables $1.1-1.12$ for systems with up to five particles. The table headings have the following meaning

Tables 1.1-1.6

Tables 1.7-1.12

		$\left(\sigma_{1} w_{1},\right)$
σw	Norm	

where

$$
\begin{equation*}
\left(\sigma_{1} w_{1}\right) \equiv\left(\sigma_{1} w_{1}, \sigma_{2} w_{2}\right) \equiv\left[\omega_{1}, \omega_{2}\right]\left|\sigma_{1} w_{1}\right\rangle\left|\sigma_{2} w_{2}\right\rangle . \tag{4.1}
\end{equation*}
$$

In tables 1.7-1.12, the special Gel'fand basis of $\operatorname{SU}(m / n)$, or the YB of $\mathscr{\mathscr { S }}(m+n)$, is labelled, for convenience, by the partition and an ordinal numbering the yb vector in the decreasing page order of the Yamanouchi numbers (Hamermesh 1962). The second column is the normalisation constant. The value listed is the square of the CGC. An asterisk denotes a negative cGC value.

By identifying ($123 \ldots$) with a specific normal order state $(\dot{\omega})$, we obtain a $\operatorname{SU}(m / n)$ table for a specific case. For instance, by letting $1234=a b c d, a b c \alpha, a b \alpha \beta, a \alpha \beta \gamma$ and $\alpha \beta \gamma \delta$ we can obtain the $\operatorname{SU}(m / n)$ cGc for the cases of 4 bosons, 3 bosons and 1 fermion, ... down to 4 fermions.

The $\operatorname{SU}(m / n)$ cGC for a six-particle system can be found from the orc of $\mathrm{S}(6)$ (Chen and Gao 1981), which, however, are relatively inaccessible. Fortunately, with the $S(5)$ orc listed in tables $1.7-1.12$ and the $S(6) \supset S(5)$ outer-product IsF (i.e. the $\mathrm{U}(m+n) \supset \mathrm{U}(m) \times \mathrm{U}(n)$ one-body CFP)

$$
\left\langle\begin{array}{c|cc}
\sigma \tag{4.2}\\
\sigma^{\prime} & \sigma_{1} & \sigma_{2} \\
\sigma_{1}^{\prime} & \sigma_{2}^{\prime}
\end{array}\right\rangle_{\theta^{\prime}}^{\theta} \equiv\left\langle\begin{array}{c|cc}
{[\sigma]} & {\left[\sigma^{\prime}\right]} & {[1]} \\
\sigma_{1} \sigma_{2} & \sigma_{1}^{\prime} \sigma_{2}^{\prime} &
\end{array}\right\rangle_{\theta^{\prime}}^{\theta}
$$

listed in Chen et al (1983c), we can easily reconstruct the $S(6)$ orc by using the
inverse of equation (2.13a) in Chen et al (1983c),

$$
\left\langle[\sigma] \theta m_{1} \mid \sigma_{1} m_{1} \sigma_{2} m_{2}\right\rangle=\sum_{\theta^{\prime}}\left\langle\begin{array}{c|cc}
\sigma & \sigma_{1} & \sigma_{2} \tag{4.3}\\
\sigma^{\prime} & \sigma_{1}^{\prime} & \sigma_{2}^{\prime}
\end{array}\right\rangle_{\theta^{\prime}}^{\theta}\left\langle\left[\sigma^{\prime}\right] \theta^{\prime} m^{\prime} \mid \sigma_{1}^{\prime} m_{1}^{\prime} \sigma_{2}^{\prime} m_{2}^{\prime}\right\rangle .
$$

For example

$$
\left\langle\begin{array}{l|ll}
134 & 13 & 24 \tag{4.4}\\
26 & 6 & 5
\end{array}\right\rangle^{\theta}=\left\langle\left.\begin{array}{c|c}
{[321]} \\
5 & {[311]}
\end{array} \right\rvert\, \begin{array}{c}
{[21][21]} \\
{[2][21]}
\end{array}\right\rangle^{\theta}\left\langle\left.\begin{array}{l}
134 \\
2 \\
5
\end{array} \right\rvert\, \begin{array}{c}
24 \\
5
\end{array}\right\rangle
$$

The above example is just the reverse of the example (2.14) in Chen et al (1983c).

4.2. Non-special Gel'fand basis for pure bosons or boson-fermion mixture

From the special CGC listed in table 1 and the norm $R^{[\sigma] m}$ listed in table 2 in Chen et al (1983b), or the analytic expression (5.15) in Chen and Chen (1983), we can easily calculate the $\operatorname{SU}(m / n)$ cGC for non-special Gel'fand bases. As examples, the nonspecial $\mathrm{SU}(\mathrm{m} / \mathrm{n}) \mathrm{CGC}$ for systems with up to four particles are given in table 2. At the bottom of each table, a prescription is given for identifying the ordinals with the sp states. The first line of each table gives

$$
\left(\sigma_{1} w_{1}, \sigma_{2} w_{2}\right)=\left[\omega_{1}, \omega_{2}\right]\left|\sigma_{1} w_{1}\right\rangle\left|\sigma_{2} w_{2}\right\rangle .
$$

For instance, by writing out explicitly, the first line in table $2.2(c)$ has the following multiple meanings:

$(112,3)$	$(113,2)$	$(123,1)$
$\|112\rangle\|3\rangle$,	$[2,3]\|113\rangle\|2\rangle$,	$\left[\begin{array}{l}2 \\ 1, \\ 3\end{array}\right]\|123\rangle\|1\rangle$
$\|a a b\rangle\|c\rangle$	$\|a a c\rangle\|b\rangle$	$\|a b c\rangle\|a\rangle$
$\|a a b\rangle\|\alpha\rangle$	$\|a a \alpha\rangle\|b\rangle$	
$\|a a \alpha\rangle\|\beta\rangle$	$-\|a a \beta\rangle\|\alpha\rangle$	$\|a b \alpha\rangle\|a\rangle$

4.3. Non-special Gel'fand bases for pure fermions

The $\operatorname{SU}(0 / n)$ cGc can similarly be calculated from (3.4), and are listed in table 3. It is seen that iables $3.1,3.2$ and 3.3 correspond to tables $2.6,2.4$ and 2.5 , respectively, in conformity with equation (3.11).

5. Summary and discussion

The cGC for the $\operatorname{SU}(m / n)$ Gel'fand basis are simply related to the orc of the permutation group through equation (3.4). The $\operatorname{SU}(m / n)$ cGc for systems with up to six particles can be either found directly from the tables presented in this paper, or calculated from the ORC tables (Chen and Gao 1981) or the outer-product isF (Chen et al 1983c). With the program for the Orc (Chen and Gao 1981) and the analytic expression for the norm $R^{[\sigma] m}$ (Chen and Chen 1983), the $\mathrm{SU}(m / n)$ cGC for more complicated cases can be calculated.

Table 1. The $\operatorname{SU}(m / n)$ cGC for the special Gel'fand basis.

1.3. $[3] \otimes[1]=[4] \oplus[31]$

		$(123,4)$	$(124,3)$	$(134,2)$	$(234,1)$
1234	4	1	1	1	1
123	12	9	${ }^{*} 1$	${ }^{\prime} 1$	$*_{1}$
4			4	$*_{1}$	$*_{1}$
124	6		1	$*_{1}$	
3	2				
134	2				

1.4. $[2] \otimes[2]=[4] \oplus[31] \oplus[22]$

		$(12,34)$	$(13,24)$	$(14,23)$	$(23,14)$	$(24,13)$	$(34,12)$
1234	6	1	1	1	1	1	1
123	6	1	1	$*_{1}$	1	$*_{1}$	$*_{1}$
4	12	4	$*_{1}$	1	$*_{1}$	1	$*_{4}$
124	4		1	1	$*_{1}$	$*_{1}$	
3	134	4		$*_{1}$	$*_{1}$	$*_{1}$	$*_{1}$
2	12	4	1	$*_{1}$	$*_{1}$	1	4
34	4						
13							

			$\left(13, \begin{array}{l}2 \\ 4\end{array}\right)$	$(14,2)$	$\left(23, \frac{1}{4}\right)$	$(24,18)$	$(34,18)$
123	3	1	1		1		
4							
124	24	${ }^{4} 4$	1	9	1	9	
3							
134	8		*1	${ }^{*} 1$	1	1	4
2							
12	8	4	*1	1	*1	1	
3							
4							
13	24		9	${ }^{*} 1$	*9	1	4
2							
4							
14	3			1		${ }^{*} 1$	1
2							
3							

1.6. $[21] \otimes[1]=[31] \oplus[22] \oplus[211]$

		$\left(\begin{array}{l}12 \\ 3\end{array}, 4\right)$	$\left(\begin{array}{l}12 \\ 4\end{array}, 3\right)$	$\left(\begin{array}{l}13 \\ 4\end{array}, 2\right)$	$\left(\begin{array}{l}23 \\ 4\end{array}, 1\right)$	$\left(\begin{array}{l}13 \\ 2\end{array}, 4\right)$	$\left(\begin{array}{l}14 \\ 2\end{array}, 3\right)$	$\left(\begin{array}{l}14 \\ 3\end{array}, 2\right)$	$\left(\begin{array}{l}24 \\ 3\end{array}, 1\right)$
123	3		1	1	1				
$\begin{aligned} & 124 \\ & 3 \end{aligned}$	96	36	4	*1	${ }^{*} 1$			27	27
$\begin{aligned} & 134 \\ & 2 \end{aligned}$	32			1	${ }^{*} 1$	12	12	3	*3
$\begin{aligned} & 12 \\ & 34 \end{aligned}$	16	4	4	${ }^{*} 1$	${ }^{*} 1$			*3	*3
$\begin{aligned} & 13 \\ & 24 \end{aligned}$	16			3	*3	4	${ }^{4} 4$	*1	1
$\begin{aligned} & 12 \\ & 3 \\ & 4 \end{aligned}$	32	12	${ }^{*} 12$	3	3			${ }^{*} 1$	${ }^{*} 1$
$\begin{aligned} & 13 \\ & 2 \\ & 4 \end{aligned}$	96			${ }^{2} 27$	27	36	${ }^{*} 4$	${ }^{1} 1$	1
$\begin{aligned} & 14 \\ & 2 \\ & 3 \end{aligned}$	3						1	*1	1

1.7. $[4] \otimes[1]=[5] \oplus[41]$

		(1234),	(1235),	(1245),	(1345),	(2345),
$[5]$	5	1	1	1	1	1
$[41]$	1	20	16	${ }^{*} 1$	${ }^{*} 1$	${ }^{*} 1$
2	12		9	${ }^{*} 1$	${ }^{*} 1$	${ }^{1} 1$
3	6			4	${ }^{*} 1$	${ }^{*} 1$
4	2				${ }^{*} 1$	${ }^{*} 1$

$\left.\left.\begin{array}{rl}\text { Note: }(1234,) & =|1234\rangle|5\rangle, \\ (1235,) & =[4,5]|1235\rangle|4\rangle, \quad(1245,)=[3, \\ 3 & 5\end{array}\right] \mid 1245\right)|3\rangle$,
1.8. $[31] \otimes[1]=[41] \oplus[32] \oplus[311]$

		$\binom{123}{4}$	$\binom{123}{5}$	$\binom{124}{5}$	$\binom{134}{5}$	$\binom{234}{5}$	$\binom{124}{3}$	$\binom{125}{3}$	$\binom{125}{4}$	$\binom{135}{4}$	$\binom{235}{4}$	$\binom{134}{2}$	$\binom{135}{2}$	$\binom{145}{2}$	$\binom{145}{3}$	$\binom{245}{3}$
[41]	4		1	1	1	1										
	540	144	9	*1	*1	*1			128	128	128					
	270			4	*1	*1	72	72	8	*2	*2				54	54
	90				1	*1				2	*2	24	24	24	6	*6
[32]	27	9	9	${ }^{*} 1$	*1	*1			*2	*2	*2					
	432			128	*32	*32	144	*36	*4	1	1				*27	*27
	144				32	*32				*1	1	48	*12	*12	*3	3
	16							4	4	*1	*1				*3	*3
	16									3	*3		4	*4	*1	1
[311]	45	18	*18	2	2	2			*1	*1	*1					
	1440			*512	128	128	576	*36	*4	1	1				*27	*27
	480				${ }^{*} 128$	128				*1	1	192	${ }^{*} 12$	${ }^{*} 12$	*3	3
	32							12	*12	3	3				*1	*1
	96									*27	27		36	*4	*1	1
	3													1	*1	1

[^0]1.9. $[22] \otimes[1]=[32] \oplus[221]$

			$\binom{12}{34}$	$\binom{12}{35}$	$\binom{12}{45}$	$\binom{13}{45}$	$\binom{23}{45}$	$\binom{13}{24}$,	$\binom{13}{25}$	$\binom{14}{25}$	$\binom{14}{35}$	$\binom{24}{35}$
[32]	1	3			1	1	1					
	2	96		36	4	*1	*1				27	27
	3	32				1	${ }^{*} 1$		12	12	3	*3
	4	32	16	4	4	*1	${ }^{*}$				*3	*3
	5	32				3	*3	16	4	${ }^{4} 4$	${ }^{*} 1$	1
[221]	1	32	16	${ }^{4} 4$	*4	1	1				3	3
	2	32				*3	3	16	*4	4	1	*1
	3	32		12	${ }^{*} 12$	3	3				*1	*1
	4	96				*27	27		36	*4	${ }^{*} 1$	1
	5	3								1	${ }^{1} 1$	1
$\binom{12}{34} \equiv\left\|\begin{array}{l}12 \\ 34\end{array}\right\rangle\|5\rangle,\binom{12}{35}=[4,5]\left\|\begin{array}{l}12 \\ 35\end{array}\right\rangle\langle 4\rangle$,												

1.10. $[3] \otimes[2]=[5] \oplus[41] \oplus[32]$

		(123,)	(124,)	(134,	(234,)	(125,)	(135,)	(235,)	(145.)	(245,	(345,
[5]	10	1	1	1	1	1	1	1	1	1	1
[41] $\begin{array}{r}1 \\ 2 \\ 3 \\ 4\end{array}$	60	9	9	9	9	${ }^{*} 4$	${ }^{4} 4$	$*_{4}$	$*_{4}$	${ }^{*} 4$	*4
	36	9	*1	${ }^{*} 1$	*1	4	4	4	${ }^{*} 4$	${ }^{*} 4$	*4
	18		4	*1	*1	4	*1	*1	1	1	${ }^{*} 4$
	6			1	${ }^{*} 1$		1	${ }^{*} 1$	1	*1	
[32]	18	9	${ }^{*} 1$	${ }^{*} 1$	*1	${ }^{1}$	${ }^{1}$	${ }^{1}$	1	1	1
	36		16	*4	${ }^{*} 4$	* 4	1	1	${ }^{*} 1$	${ }^{*} 1$	4
	12			4	${ }^{*} 4$		${ }^{*} 1$	1	${ }^{*} 1$	1	
	12					4	${ }^{*} 1$	*1	${ }^{*} 1$	${ }^{*} 1$	4
	4						1	${ }^{*} 1$	${ }^{*} 1$	1	

$(123,) \equiv|123\rangle|45\rangle,(124,) \equiv[3,4]|124\rangle|35\rangle, \ldots$
1.11. $[3] \otimes[11]=[41] \oplus[311]$

			(123,)	(124,)	(134,)	(234,	(125,	(135,	(235,	(145,	(245,	(345,
[41]	1	4	1	1	1	1						
	2	60	*9	1	1	1	16	16	16			
	3	30		$*_{4}$	1	1	$*_{4}$	1	1	9	9	
	4	10			*1	1		${ }^{*} 1$	1	${ }^{*} 1$	1	4
[311]		15	9	${ }^{*} 1$	*1	${ }^{*} 1$	1	1	1			
	2	120		64	${ }^{*} 16$	${ }^{*} 16$	$*_{4}$	1	1	9	9	
	3	40			16	${ }^{*} 16$		*1	1	${ }^{*} 1$	1	4
	4	8					4	${ }^{*} 1$	*1	1	1	
	5	24						9	*9	${ }^{1}$	1	4
	6	3								1	${ }^{*} 1$	1

$(123,) \equiv|123\rangle\left|\begin{array}{l}4 \\ 5\end{array}\right\rangle,(124,) \equiv[3,4]|124\rangle\left|\begin{array}{l}3 \\ 5\end{array}\right\rangle, \ldots$
1.12. $[21] \otimes[2]=[41] \oplus[32] \oplus[311] \oplus[221]$

Table 2. The $\operatorname{SU}(m / n)$ CGC for non-special Gel'fand basis.

$2.2(a)$	$[3] \otimes[1]$						
	$(111,2)$	$(112,1)$					
1112	$\frac{1}{4}$	$\frac{3}{4}$					
111	$\frac{3}{4}$	$* \frac{1}{4}$					
2							
$1112=$ aaab, aaao					$(122,3)$	$(123,2)$	$(223,1)$
:---	:---	:---	:---				
1223	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$				
122	3	$* \frac{1}{6}$	$* \frac{1}{12}$				
3	4						
123	0	$\frac{1}{3}$	$* \frac{2}{3}$				
2							
$1223=a b b c, a b b \alpha$							

$a b b c, a b b a$
$2.3(c)$

$1123=a a b c, a a b \alpha, a a \alpha \beta$

	$(112,3)$	$(113,2)$	$(123,1)$
1123	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$
112	$\frac{3}{4}$	$* \frac{1}{12}$	$* \frac{1}{6}$
3	0	$\frac{2}{3}$	$* \frac{1}{3}$
113			
2			
$1123=a a b c, a a b \alpha, a a \alpha \beta$			
$2.3(a)$	$[2] \otimes[2]$		

$1122=a a b b$

$2.3(e)$				
	$(12,23)$	$(13,22)$	$(22,13)$	$(23,12)$
1223	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$
122	$\frac{1}{3}$	$* \frac{1}{6}$	$\frac{1}{6}$	$* \frac{1}{3}$
3				
123	$\frac{1}{6}$	$\frac{1}{3}$	$* \frac{1}{3}$	$* \frac{1}{6}$
2		$* \frac{1}{3}$	$* \frac{1}{3}$	$\frac{1}{6}$
12	$\frac{1}{6}$			
23				

$2.3(f)$				
	$(12,33)$	$(13,23)$	$(23,13)$	$(33,12)$
1233	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$
123	$\frac{1}{2}$	0	0	$*_{\frac{1}{2}}^{2}$
3				
133	0	$\frac{1}{2}$	$* \frac{1}{2}$	0
2		$* \frac{1}{6}$	$* \frac{1}{6}$	$\frac{1}{3}$
12	$\frac{1}{3}$			
33				

2.4(a)	[2] \otimes [11]			2.4 (b)			
	$\left(11,2 \begin{array}{l}2\end{array}\right)$	$(12,18)$	$\left(13, \begin{array}{l}1 \\ 2\end{array}\right)$		$\left(12, \frac{2}{3}\right)$	$(22,18)$	$(23,18$
$\begin{aligned} & 112 \\ & 3 \end{aligned}$	$\frac{1}{3}$	$\frac{2}{3}$	0	122	$\frac{2}{3}$	$\frac{1}{3}$	0
$\begin{aligned} & 113 \\ & 2 \end{aligned}$	* ${ }_{6}$	$\frac{1}{12}$	$\frac{3}{4}$	$\begin{aligned} & 123 \\ & 2 \end{aligned}$	$* \frac{1}{12}$	$\frac{1}{6}$	$\frac{3}{4}$
$\begin{aligned} & 11 \\ & 2 \\ & 3 \end{aligned}$	$\frac{1}{2}$	* ${ }_{4}$	$\frac{1}{4}$	$\begin{aligned} & 12 \\ & 2 \\ & 3 \end{aligned}$	$\frac{1}{4}$	$*_{\frac{1}{2}}$	$\frac{1}{4}$
$1123=a a b c, a a b \alpha, a a \alpha \beta$				1223	$b b c, a b b \alpha$		

Table 3. The $\operatorname{SU}(0 / n)$ CGC for non-special Gel'fand basis.

3.3(b)

	${ }_{\beta}^{\alpha \beta}, \gamma$	${ }_{\gamma}^{\alpha \beta}, \beta$	${ }_{\beta}^{\alpha \gamma}, \beta$	${ }_{\beta}^{\beta \gamma}, \alpha$
${ }_{\beta}^{\alpha \beta \gamma}$	${ }^{\frac{3}{8}}$	* $\frac{1}{16}$	$\frac{3}{16}$	* ${ }_{8}^{8}$
$\begin{aligned} & \alpha \beta \\ & \beta \end{aligned}$	$\frac{3}{8}$	$\frac{9}{16}$	* $\frac{1}{48}$	$\frac{1}{24}$
$\begin{aligned} & \gamma \\ & \alpha \gamma \\ & \beta \\ & \beta \end{aligned}$	0	0	*2	${ }^{* \frac{1}{3}}$
$\begin{aligned} & \alpha \beta \\ & \beta \gamma \end{aligned}$	$\frac{1}{4}$	*3	${ }^{*} \frac{1}{8}$	$\frac{1}{4}$

$3.3(a) \quad[21] \otimes[1]$

	${ }_{\alpha}^{\alpha \beta}, \gamma$	${ }_{\alpha}^{\alpha \gamma}, \beta$	$\begin{gathered} \alpha \beta \\ \gamma \end{gathered}, \alpha$	${ }_{\beta}^{\alpha \gamma}, \alpha$
$\alpha \beta \gamma$	$\frac{3}{8}$	* ${ }^{8}$	$\frac{1}{16}$	$\frac{3}{16}$
α				
$\alpha \beta$	$\frac{3}{8}$	$\frac{1}{24}$	* ${ }_{16}$	* $\frac{1}{48}$
α				
γ				
$\alpha \gamma$	0	* $\frac{1}{3}$	0	*2 ${ }^{2}$
α				
β				
$\alpha \beta$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{8}$	* ${ }_{\frac{1}{8}}$
$\alpha \gamma$				

3.3(c)

	${ }_{\gamma}^{\alpha \beta}, \gamma$	${ }_{\beta}^{\alpha \gamma}, \gamma$	${ }_{\gamma}^{\alpha \gamma}, \beta$	$\begin{aligned} & \beta \gamma \\ & \gamma \end{aligned}, \alpha$
$\alpha \beta \gamma$	*1	0	$\frac{3}{8}$	*3
γ				
$\alpha \beta$	${ }^{\frac{3}{4}}$	0	$\frac{1}{8}$	*1
γ				
γ				
${ }^{\alpha} \gamma$	0	$\frac{1}{2}$	*1	*1
β				
γ				
$\alpha \gamma$	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$
$\beta \gamma$				

The values of the $\operatorname{SU}(m / n)$ CGC are m and n independent. Therefore, each CGC table in fact represents infinitely many tables of the same class. For example, in tables $1.3-1.6$ by letting $1234=a b c d, \quad a b c e, \quad a b d e, \quad a c d e, \quad b c d e, \ldots a b c \alpha$, $a b c \beta, \ldots a b d \alpha, \ldots a b \alpha \beta, a b \alpha \gamma, \ldots$, we can get an infinite number of CGC tables.

The Baird-Biedenharn phase convention (3.12) ensures that the CGC which are equivalent under $\operatorname{SU}(m)$ will have the same phase. For instance, in table 1.6, we let

$$
1234=a a b b, \underset{4}{123} \underset{b}{a a b},{\underset{34}{12} \rightarrow \underset{b b^{\prime}}{a a}}_{\rightarrow}^{a}
$$

Using (3.4) and table 1.6, as well as table 2 in Chen et al (1983b), we obtain the following table for the $\mathrm{U}(2)$ cGC

	$a a, b$	$a b$
	b,	b,
$a a b$ b $a a$ $b b$	$\frac{1}{2}$	$\frac{1}{2}$

On restricting $U(2)$ to $S U(2)$, the above table becomes identical to table 1.1.
Analogously, in table 1.11, we let

Using the norm $R^{[\sigma] m}$ for $S(2)-S(5)$ in Chen and Gao (1981), and (3.4) we obtain the following table for the $U(3)$ CGC

	$a a b,$$b$ c	$a b b,{ }_{c}{ }_{c}$	$a b c,{ }^{a}{ }_{b}$
$a a b b$ c	$\frac{1}{2}$	$\frac{1}{2}$	0
$a a b c$ b	$* \frac{1}{10}$	$\frac{1}{10}$	$\frac{4}{5}$
$a a b$ b c	$\frac{2}{5}$	$* \frac{2}{5}$	$\frac{1}{5}$

On restricting $\mathrm{U}(3)$ to $\mathrm{SU}(3),\left|\begin{array}{l}a a b \\ b \\ c\end{array}\right| \rightarrow|a b\rangle$.

Note added in proof. Although under the Baird-Biedenharn phase convention, the CGC of $\mathrm{U}(m)$ and $\mathrm{SU}(m)$ have been identified, the relation between the CGC of $\mathrm{U}(\mathrm{m} / n)$ and $\mathrm{SU}(\mathrm{m} / n)$ is not yet clear. Therefore it is safer to replace all the terms 'the CGC of $\mathrm{SU}(\mathrm{m} / n)$ ' in the present paper by 'the CGC of $\mathrm{U}(m / n)$ '.

References

Baird G E and Biedenharn L C 1963 J. Math. Phys. 41449

- 1965 J. Math. Phys. 61487

Balantekin A B 1982 J. Math. Phys. 231239
Balantekin A B and Bars I 1981 J. Math. Phys. 221810
Balantekin A B, Bars I and Iachello F 1981 Nucl. Phys. A 370284
Bickerstaff R P, Butler P H, Butts M B, Haase R W and Reid M F 1982 J. Phys. A: Math. Gen. 151087
Chen J Q and Chen X G 1983 J. Phys. A: Math. Gen. 163435
Chen J Q, Chen X G and Gao M J 1983a J. Phys. A: Math. Gen. 16 L47
_-1983b J. Phys. A: Math. Gen. 161361
Chen J Q and Gao M J 1981 Reduction Coefficients of Permutation Groups and Their Applications (Beijing: Science Press)
Chen J Q, Gao M J and Chen X G 1983c Coefficients of fractional parentage for $U(m+n) \supset U(m) \times U(n)$, $U(m / n) \supset U(m) \times U(n)$ and $U(m+p / n+q) \supset U(m N n) \times U(p / q)$, J. Phys. A: Math. Gen. submitted for publication
Chen J Q, Gao M J, Shi Y J, Vallieres M and Feng D H 1983 d Tables of one-body CFP for the group chains $U(m n) \supset U(m) \times U(n)$ and $U(m p+n q / m q+n p) \supset U(m / n) \times U(p / q)$, Nucl. Phys. A in press
Chen J Q, Wang F and Gao M J 1977 Acta Phys. Sinica 26427 (transl. 1981 Chinese Phys. 1 542)
-_ 1978a Acta Phys. Sinica 2731

- 1978b Acta Phys. Sinica 27203

Dondi P H and Jarvis P D 1979 Phys. Lett. 84B 75

- 1981 J. Phys. A: Math. Gen. 14547

Haacke E M, Moffat W and Savaria P 1976 J. Math. Phys. 172041
Hamermesh M 1962 Group Theory (Reading, Mass: Addison-Wesley)
Han Q Z, Son X C, Li G D and Sun H Z 1981 Phys. Energ. Fortis Phys. Nucl. 5546
Iachello F 1980 Phys. Rev. Lett. 44772
Jarvis P D and Green H S 1979 J. Math. Phys. 202115
McNamee P S J and Chilton F 1964 Rev. Mod. Phys. 361005
Ne'eman Y 1979 Phys. Lett. 81B 190
Sun H Z 1980 Phys. Energ. Fortis Phys. Nucl. 473
Sun H Z and Han Q Z 1981 Scientia Sinica 24914
de Swart J J 1963 Rev. Mod. Phys. 35916

[^0]: $\binom{123}{4}=\left\{\begin{array}{l}123 \\ 4\end{array}\right\rangle|5\rangle,\binom{123}{5}=[4,5]\left|\begin{array}{l}123 \\ 5\end{array}\right\rangle|4\rangle$,

